Edge-Aware Attention Transformer for Image Super-Resolution

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-10-09 DOI:10.1109/LSP.2024.3477298
Haoqian Wang;Zhongyang Xing;Zhongjie Xu;Xiangai Cheng;Teng Li
{"title":"Edge-Aware Attention Transformer for Image Super-Resolution","authors":"Haoqian Wang;Zhongyang Xing;Zhongjie Xu;Xiangai Cheng;Teng Li","doi":"10.1109/LSP.2024.3477298","DOIUrl":null,"url":null,"abstract":"In this study, we explore poor edge reconstruction in image super-resolution (SR) tasks, emphasizing the significance of enhancing edge details identified through visual analysis. Existing SR networks typically optimize their network architectures, enabling complete feature extraction from feature maps. This is because the management of spatial and channel information during SR is often pivotal to the network's feature extraction capacity. Despite continuous improvements, directly comparing SR and high-resolution (HR) images through differential mapping reveals the suboptimal performance of these methods in edge reconstruction. In this paper, we introduce a edgey-aware attention transformer (EAT), which focuses on edge reconstruction while maintaining the effective original low frequency information retrieval. Our framework utilizes deformable convolution (DC) to adaptively extract edge features. Then feature enhancement techniques are employed to intensify edge-sensitive features. Furthermore, extensive experiments demonstrate our EAT's exceptional quantitative and visual results, which surpass most benchmarks. This validates the EAT's effectiveness when compared to state-of-the-art models. The code is available at \n<uri>https://github.com/ImWangHaoqian/EAT</uri>\n.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10710151/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore poor edge reconstruction in image super-resolution (SR) tasks, emphasizing the significance of enhancing edge details identified through visual analysis. Existing SR networks typically optimize their network architectures, enabling complete feature extraction from feature maps. This is because the management of spatial and channel information during SR is often pivotal to the network's feature extraction capacity. Despite continuous improvements, directly comparing SR and high-resolution (HR) images through differential mapping reveals the suboptimal performance of these methods in edge reconstruction. In this paper, we introduce a edgey-aware attention transformer (EAT), which focuses on edge reconstruction while maintaining the effective original low frequency information retrieval. Our framework utilizes deformable convolution (DC) to adaptively extract edge features. Then feature enhancement techniques are employed to intensify edge-sensitive features. Furthermore, extensive experiments demonstrate our EAT's exceptional quantitative and visual results, which surpass most benchmarks. This validates the EAT's effectiveness when compared to state-of-the-art models. The code is available at https://github.com/ImWangHaoqian/EAT .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像超分辨率的边缘感知注意力变换器
在这项研究中,我们探讨了图像超分辨率(SR)任务中的边缘重建问题,强调了通过视觉分析增强边缘细节的重要性。现有的 SR 网络通常会优化其网络架构,以便从特征图中完整提取特征。这是因为在 SR 过程中,空间和通道信息的管理往往对网络的特征提取能力至关重要。尽管不断改进,但通过差分映射直接比较 SR 和高分辨率(HR)图像发现,这些方法在边缘重建方面的性能并不理想。在本文中,我们介绍了一种边缘感知注意力转换器(EAT),它侧重于边缘重建,同时保持有效的原始低频信息检索。我们的框架利用可变形卷积(DC)自适应地提取边缘特征。然后采用特征增强技术来强化边缘敏感特征。此外,大量实验证明,我们的 EAT 在数量和视觉效果上都非常出色,超越了大多数基准测试。与最先进的模型相比,这验证了 EAT 的有效性。代码见 https://github.com/ImWangHaoqian/EAT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
KFA: Keyword Feature Augmentation for Open Set Keyword Spotting RFI-Aware and Low-Cost Maximum Likelihood Imaging for High-Sensitivity Radio Telescopes Audio Mamba: Bidirectional State Space Model for Audio Representation Learning System-Informed Neural Network for Frequency Detection Order Estimation of Linear-Phase FIR Filters for DAC Equalization in Multiple Nyquist Bands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1