Haoqian Wang;Zhongyang Xing;Zhongjie Xu;Xiangai Cheng;Teng Li
{"title":"Edge-Aware Attention Transformer for Image Super-Resolution","authors":"Haoqian Wang;Zhongyang Xing;Zhongjie Xu;Xiangai Cheng;Teng Li","doi":"10.1109/LSP.2024.3477298","DOIUrl":null,"url":null,"abstract":"In this study, we explore poor edge reconstruction in image super-resolution (SR) tasks, emphasizing the significance of enhancing edge details identified through visual analysis. Existing SR networks typically optimize their network architectures, enabling complete feature extraction from feature maps. This is because the management of spatial and channel information during SR is often pivotal to the network's feature extraction capacity. Despite continuous improvements, directly comparing SR and high-resolution (HR) images through differential mapping reveals the suboptimal performance of these methods in edge reconstruction. In this paper, we introduce a edgey-aware attention transformer (EAT), which focuses on edge reconstruction while maintaining the effective original low frequency information retrieval. Our framework utilizes deformable convolution (DC) to adaptively extract edge features. Then feature enhancement techniques are employed to intensify edge-sensitive features. Furthermore, extensive experiments demonstrate our EAT's exceptional quantitative and visual results, which surpass most benchmarks. This validates the EAT's effectiveness when compared to state-of-the-art models. The code is available at \n<uri>https://github.com/ImWangHaoqian/EAT</uri>\n.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2905-2909"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10710151/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore poor edge reconstruction in image super-resolution (SR) tasks, emphasizing the significance of enhancing edge details identified through visual analysis. Existing SR networks typically optimize their network architectures, enabling complete feature extraction from feature maps. This is because the management of spatial and channel information during SR is often pivotal to the network's feature extraction capacity. Despite continuous improvements, directly comparing SR and high-resolution (HR) images through differential mapping reveals the suboptimal performance of these methods in edge reconstruction. In this paper, we introduce a edgey-aware attention transformer (EAT), which focuses on edge reconstruction while maintaining the effective original low frequency information retrieval. Our framework utilizes deformable convolution (DC) to adaptively extract edge features. Then feature enhancement techniques are employed to intensify edge-sensitive features. Furthermore, extensive experiments demonstrate our EAT's exceptional quantitative and visual results, which surpass most benchmarks. This validates the EAT's effectiveness when compared to state-of-the-art models. The code is available at
https://github.com/ImWangHaoqian/EAT
.
在这项研究中,我们探讨了图像超分辨率(SR)任务中的边缘重建问题,强调了通过视觉分析增强边缘细节的重要性。现有的 SR 网络通常会优化其网络架构,以便从特征图中完整提取特征。这是因为在 SR 过程中,空间和通道信息的管理往往对网络的特征提取能力至关重要。尽管不断改进,但通过差分映射直接比较 SR 和高分辨率(HR)图像发现,这些方法在边缘重建方面的性能并不理想。在本文中,我们介绍了一种边缘感知注意力转换器(EAT),它侧重于边缘重建,同时保持有效的原始低频信息检索。我们的框架利用可变形卷积(DC)自适应地提取边缘特征。然后采用特征增强技术来强化边缘敏感特征。此外,大量实验证明,我们的 EAT 在数量和视觉效果上都非常出色,超越了大多数基准测试。与最先进的模型相比,这验证了 EAT 的有效性。代码见 https://github.com/ImWangHaoqian/EAT。
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.