Recent progress in the development of liquid metal plasma facing components for magnetic fusion devices

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2024-10-18 DOI:10.1016/j.nme.2024.101776
J.S. Hu , G.Z. Zuo , L. Li , D.H. Zhang , H.L. Bi , Z.B. Ye , J.H. Pan , S.Y. Dai , X.C. Meng , Z. Sun , M. Ono , Y. Hirooka , D.N. Ruzic
{"title":"Recent progress in the development of liquid metal plasma facing components for magnetic fusion devices","authors":"J.S. Hu ,&nbsp;G.Z. Zuo ,&nbsp;L. Li ,&nbsp;D.H. Zhang ,&nbsp;H.L. Bi ,&nbsp;Z.B. Ye ,&nbsp;J.H. Pan ,&nbsp;S.Y. Dai ,&nbsp;X.C. Meng ,&nbsp;Z. Sun ,&nbsp;M. Ono ,&nbsp;Y. Hirooka ,&nbsp;D.N. Ruzic","doi":"10.1016/j.nme.2024.101776","DOIUrl":null,"url":null,"abstract":"<div><div>One of the most critical challenges for future fusion reactors is to develop longevity plasma-facing components (PFCs) exposed to extremely high heat and neutron loads. As opposed to those employing solid metals, PFCs with flowing liquid metals (LM) have shown self-healing, heat removal and good impurity control capabilities, all essential to fusion devices. Recently, significant progress in LM-PFC development has been reported globally, with data from several magnetic fusion devices. These studies reveal that LM-PFCs can endure extreme heat fluxes while maintaining plasma compatibility. New design concepts have been proposed and numerically analyzed, advancing models for liquid PFCs in future reactors. Despite existing technical challenges, these developments suggest that LM-PFCs hold promise for future fusion applications.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"41 ","pages":"Article 101776"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179124001996","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most critical challenges for future fusion reactors is to develop longevity plasma-facing components (PFCs) exposed to extremely high heat and neutron loads. As opposed to those employing solid metals, PFCs with flowing liquid metals (LM) have shown self-healing, heat removal and good impurity control capabilities, all essential to fusion devices. Recently, significant progress in LM-PFC development has been reported globally, with data from several magnetic fusion devices. These studies reveal that LM-PFCs can endure extreme heat fluxes while maintaining plasma compatibility. New design concepts have been proposed and numerically analyzed, advancing models for liquid PFCs in future reactors. Despite existing technical challenges, these developments suggest that LM-PFCs hold promise for future fusion applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁核聚变装置液态金属等离子体面组件的最新研发进展
未来核聚变反应堆面临的最严峻挑战之一,是开发能够承受极高的热量和中子负荷的长寿命等离子体面组件(PFC)。与采用固态金属的元件相比,采用流动液态金属(LM)的 PFC 具有自愈、散热和良好的杂质控制能力,这些都是聚变设备所必需的。最近,全球在 LM-PFC 的开发方面取得了重大进展,并获得了几个磁核聚变装置的数据。这些研究表明,LM-PFC 可以承受极端热通量,同时保持等离子体的兼容性。研究人员提出了新的设计概念,并对其进行了数值分析,从而推动了未来反应堆中液体全氟化碳模型的发展。尽管存在技术挑战,但这些进展表明 LM-PFC 在未来的核聚变应用中大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Theoretical investigation of structural, electronic, mechanical, surface work function and thermodynamic properties of La1-xMxB6 (M = Ba, Sr, Ca) compounds: Potential plasma grid materials in N-NBI system Study of spectral features and depth distributions of boron layers on tungsten substrates by ps-LIBS in a vacuum environment Initial design concepts for solid boron injection in ITER Utilization of D2 molecular band emission for electron density measurement Fast prediction of irradiation-induced cascade defects using denoising diffusion probabilistic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1