{"title":"An electro-thermo-mechanical coupling phase-field model of defect evolution induced by electromigration in interconnects","authors":"Xin-Wei Wu, Mingyang Chen, Liao-Liang Ke","doi":"10.1016/j.ijmecsci.2024.109792","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the defect evolution caused by electromigration induced surface diffusion in interconnects is investigated using a newly-developed electro-thermo-mechanical coupling phase-field model. The Joule heat and its resulting thermomigration are included into the phase-field model. The governing equation of the phase-field is solved by semi-implicit spectral methods and the accompanied governing equations of applied physics fields are solved by finite volume methods. Comparative investigation into defect evolution with and without the influence of Joule heating is conducted. It is deduced that thermomigration facilitates local elongation of the defect in the “current crowding” region and exerts a substantial influence on the defect morphological evolution. Subsequently, the effect of the inclination angle of the electric field on the void morphology evolution and crack propagation is discussed. We find that the defect achieves the largest characteristic length when the electric field direction is perpendicular to the uniaxial tension direction, implying a higher threat to the circuit safety. This study may help to deepen people's understanding of how the thermal effect functions in electromigration process and sheds light on different modes of defect evolution in interconnects.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109792"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324008336","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the defect evolution caused by electromigration induced surface diffusion in interconnects is investigated using a newly-developed electro-thermo-mechanical coupling phase-field model. The Joule heat and its resulting thermomigration are included into the phase-field model. The governing equation of the phase-field is solved by semi-implicit spectral methods and the accompanied governing equations of applied physics fields are solved by finite volume methods. Comparative investigation into defect evolution with and without the influence of Joule heating is conducted. It is deduced that thermomigration facilitates local elongation of the defect in the “current crowding” region and exerts a substantial influence on the defect morphological evolution. Subsequently, the effect of the inclination angle of the electric field on the void morphology evolution and crack propagation is discussed. We find that the defect achieves the largest characteristic length when the electric field direction is perpendicular to the uniaxial tension direction, implying a higher threat to the circuit safety. This study may help to deepen people's understanding of how the thermal effect functions in electromigration process and sheds light on different modes of defect evolution in interconnects.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.