K.I. Popova , F. Glang , D. Bosch , K. Scheffler , N.I. Avdievich , S.B. Glybovski , G.A. Solomakha
{"title":"An array of paired folded-end dipoles for whole-brain imaging at 9.4 T","authors":"K.I. Popova , F. Glang , D. Bosch , K. Scheffler , N.I. Avdievich , S.B. Glybovski , G.A. Solomakha","doi":"10.1016/j.jmr.2024.107791","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>To improve transmit B<sub>1</sub><sup>+</sup> field homogeneity and longitudinal coverage of a human head RF array, we developed a novel eight-element transceiver (TxRx) array using composite elements based on paired folded-end dipoles.</div></div><div><h3>Methods</h3><div>The developed array consisted of eight pairs of coupled folded-end dipoles. Only one dipole in each pair was driven during transmission, while the other was passively coupled with the active one. The distribution of the transmit B<sub>1</sub><sup>+</sup> field was numerically optimized by changing the overlap between the dipoles and the value of the reactive lumped element placed in the middle of the passive dipole.</div></div><div><h3>Results</h3><div>The proposed array of paired folded-end dipoles substantially improved the B<sub>1</sub><sup>+</sup> homogeneity and longitudinal coverage over the entire brain including the brain stem compared to a single-row folded-end dipole array. The improved whole brain coverage was demonstrated both numerically and experimentally.</div></div><div><h3>Conclusion</h3><div>As a proof of concept, we developed and characterized both numerically and experimentally a prototype of a single-row eight-element 9.4 T array for human brain imaging consisting of composite array elements based on paired passively-coupled folded-end dipoles. The array improved the transmit magnetic field distribution due to the laterally elongated field pattern created by one active and one passive dipole per channel. As a result, the provided coverage was substantially better than that of an 8-element dipole array consisting of long folded-end dipoles. For the first time, an image of the entire human brain at 9.4 T, covering the brain stem up to the fourth vertebra, was obtained using a simple single row eight-element array.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"368 ","pages":"Article 107791"},"PeriodicalIF":2.0000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001757","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
To improve transmit B1+ field homogeneity and longitudinal coverage of a human head RF array, we developed a novel eight-element transceiver (TxRx) array using composite elements based on paired folded-end dipoles.
Methods
The developed array consisted of eight pairs of coupled folded-end dipoles. Only one dipole in each pair was driven during transmission, while the other was passively coupled with the active one. The distribution of the transmit B1+ field was numerically optimized by changing the overlap between the dipoles and the value of the reactive lumped element placed in the middle of the passive dipole.
Results
The proposed array of paired folded-end dipoles substantially improved the B1+ homogeneity and longitudinal coverage over the entire brain including the brain stem compared to a single-row folded-end dipole array. The improved whole brain coverage was demonstrated both numerically and experimentally.
Conclusion
As a proof of concept, we developed and characterized both numerically and experimentally a prototype of a single-row eight-element 9.4 T array for human brain imaging consisting of composite array elements based on paired passively-coupled folded-end dipoles. The array improved the transmit magnetic field distribution due to the laterally elongated field pattern created by one active and one passive dipole per channel. As a result, the provided coverage was substantially better than that of an 8-element dipole array consisting of long folded-end dipoles. For the first time, an image of the entire human brain at 9.4 T, covering the brain stem up to the fourth vertebra, was obtained using a simple single row eight-element array.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.