Mechanistic insight into the aqueous transformation of sartans by ozonation and the Fe(II)/peroxymonosulfate system

IF 6.3 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of water process engineering Pub Date : 2024-10-18 DOI:10.1016/j.jwpe.2024.106367
Linke Jiang , Ruiqi Wang , Shuiqin Shi , Junmei Yan , Mingbao Feng , Lianbao Chi
{"title":"Mechanistic insight into the aqueous transformation of sartans by ozonation and the Fe(II)/peroxymonosulfate system","authors":"Linke Jiang ,&nbsp;Ruiqi Wang ,&nbsp;Shuiqin Shi ,&nbsp;Junmei Yan ,&nbsp;Mingbao Feng ,&nbsp;Lianbao Chi","doi":"10.1016/j.jwpe.2024.106367","DOIUrl":null,"url":null,"abstract":"<div><div>With the aging of the global population and continued economic development, the use of sartan-type antihypertensive drugs (e.g., losartan (LOS), telmisartan (TEL), and valsartan (VAL)) has increased with widespread contamination issues. However, the effect of advanced oxidation processes (AOPs) on the degradation of sartans remains unknown. Therefore, AOPs such as the Fe(II)/peroxymonosulfate (PMS) system and ozonation were used to treat the typical sartans, which led to the formation of various transformation products (TPs). This research involves the formation mechanisms of these TPs following AOPs including aldolization, hydroxylation, ring cleavage, carbonylation and cyclization. The risk evaluation focused on the biodegradability and toxicity of the drugs and their TPs, assessed using computerized toxicity prediction software. The findings indicated that the biodegradability of most TPs was generally poor and most TPs exhibited acute/chronic toxicity. This underscores the need for caution when applying AOPs in water treatment to prevent secondary contamination and suggests the potential necessity of integrating AOPs with complementary purification technologies. This research provides novel insights into the degradation pathways and environmental risks of sartans, emphasizing the importance of a holistic approach to water treatment.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106367"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221471442401599X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the aging of the global population and continued economic development, the use of sartan-type antihypertensive drugs (e.g., losartan (LOS), telmisartan (TEL), and valsartan (VAL)) has increased with widespread contamination issues. However, the effect of advanced oxidation processes (AOPs) on the degradation of sartans remains unknown. Therefore, AOPs such as the Fe(II)/peroxymonosulfate (PMS) system and ozonation were used to treat the typical sartans, which led to the formation of various transformation products (TPs). This research involves the formation mechanisms of these TPs following AOPs including aldolization, hydroxylation, ring cleavage, carbonylation and cyclization. The risk evaluation focused on the biodegradability and toxicity of the drugs and their TPs, assessed using computerized toxicity prediction software. The findings indicated that the biodegradability of most TPs was generally poor and most TPs exhibited acute/chronic toxicity. This underscores the need for caution when applying AOPs in water treatment to prevent secondary contamination and suggests the potential necessity of integrating AOPs with complementary purification technologies. This research provides novel insights into the degradation pathways and environmental risks of sartans, emphasizing the importance of a holistic approach to water treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
臭氧和铁(II)/过氧单硫酸盐体系对沙坦类水性转化的机理研究
随着全球人口老龄化和经济的持续发展,沙坦类降压药(如洛沙坦(LOS)、替米沙坦(TEL)和缬沙坦(VAL))的使用量不断增加,污染问题普遍存在。然而,高级氧化工艺(AOPs)对沙坦类药物降解的影响仍然未知。因此,研究人员采用了铁(II)/过氧单硫酸盐(PMS)系统和臭氧氧化等 AOPs 来处理典型的沙坦类药物,从而形成了各种转化产物(TPs)。本研究涉及这些 TPs 在 AOPs 之后的形成机制,包括醛化、羟基化、环裂解、羰基化和环化。风险评估的重点是药物及其 TPs 的生物降解性和毒性,使用计算机毒性预测软件进行评估。研究结果表明,大多数 TPs 的生物降解性普遍较差,而且大多数 TPs 具有急性/慢性毒性。这强调了在水处理中应用 AOPs 时需要谨慎,以防止二次污染,并表明将 AOPs 与辅助净化技术相结合的潜在必要性。这项研究为了解沙坦类药物的降解途径和环境风险提供了新的视角,强调了采用综合方法进行水处理的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of water process engineering
Journal of water process engineering Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
10.70
自引率
8.60%
发文量
846
审稿时长
24 days
期刊介绍: The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies
期刊最新文献
Phosphorus recovery from domestic wastewater via Candida tropicalis: Performance and mechanism Heightened photocatalytic performance of ZnMoO4 by incorporation of cobalt heteroatom to enhance oxygen defects for boosted pharmaceutical degradation Dual vacancies and S-scheme BiOBr/Bi2WO6 heterojunction synergistically boost the directional transfer of photogenerated electrons for efficient photocatalytic degradation of norfloxacin Promoting removal of polystyrene microplastics from wastewater by electrochemical treatment Intensification of adsorptive ceramic ultrafiltration membrane system by nanoclay coating and multivariate optimization of humic acid removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1