Predicting the Physical Properties of Dark Matter Subhalos from Baryonic Parameters Using Machine Learning

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS New Astronomy Pub Date : 2024-10-20 DOI:10.1016/j.newast.2024.102316
Moonzarin Reza
{"title":"Predicting the Physical Properties of Dark Matter Subhalos from Baryonic Parameters Using Machine Learning","authors":"Moonzarin Reza","doi":"10.1016/j.newast.2024.102316","DOIUrl":null,"url":null,"abstract":"<div><div>Dark matter subhalos play an important role in galaxy formation and evolution. However, accurate prediction of dark matter properties remains a challenge of modern-day astronomy. In recent times, machine learning (ML) tools have shown promising results in solving numerous astrophysical problems. In this paper, we use data from the EAGLE simulations to determine the total mass and the half-mass radius of dark matter subhalos using structural properties of gas, star, black hole, and photometric features using gradient boosted decision trees (GBDT) and dense neural network. GBDT does not require data preprocessing, and results in better performance compared to the neural network. According to GBDT, the most important feature for subhalo radius and mass estimation is gas radius and black hole mass respectively. The all-features combined approach results in the highest test accuracy — Pearson’s correlation coefficient = 0.947 and 0.981, coefficient of determination = 0.898 and 0.962, normalized median absolute deviation = 0.111 and 0.114 for radius and mass respectively. We evaluate our model for masses and redshifts beyond its training range and find that GBDT demonstrates significantly better extrapolation capabilities than the neural network. We also test our model on simulations with different resolutions, and find that the discrepancies lie within 10% if the resolution is changed. This novel study incorporates the structural parameters of gas and black hole to determine the dark matter properties using a ML-based approach. The promising results of this study prove that ML tools can improve our current understanding of dark matter, and answer some of the basic cosmological questions.</div></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"115 ","pages":"Article 102316"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624001301","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dark matter subhalos play an important role in galaxy formation and evolution. However, accurate prediction of dark matter properties remains a challenge of modern-day astronomy. In recent times, machine learning (ML) tools have shown promising results in solving numerous astrophysical problems. In this paper, we use data from the EAGLE simulations to determine the total mass and the half-mass radius of dark matter subhalos using structural properties of gas, star, black hole, and photometric features using gradient boosted decision trees (GBDT) and dense neural network. GBDT does not require data preprocessing, and results in better performance compared to the neural network. According to GBDT, the most important feature for subhalo radius and mass estimation is gas radius and black hole mass respectively. The all-features combined approach results in the highest test accuracy — Pearson’s correlation coefficient = 0.947 and 0.981, coefficient of determination = 0.898 and 0.962, normalized median absolute deviation = 0.111 and 0.114 for radius and mass respectively. We evaluate our model for masses and redshifts beyond its training range and find that GBDT demonstrates significantly better extrapolation capabilities than the neural network. We also test our model on simulations with different resolutions, and find that the discrepancies lie within 10% if the resolution is changed. This novel study incorporates the structural parameters of gas and black hole to determine the dark matter properties using a ML-based approach. The promising results of this study prove that ML tools can improve our current understanding of dark matter, and answer some of the basic cosmological questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习从重子参数预测暗物质亚halos的物理特性
暗物质亚halos 在星系形成和演化过程中发挥着重要作用。然而,准确预测暗物质特性仍然是现代天文学面临的一项挑战。近来,机器学习(ML)工具在解决众多天体物理问题方面取得了可喜的成果。在本文中,我们利用来自 EAGLE 模拟的数据,使用梯度提升决策树(GBDT)和密集神经网络,利用气体、恒星、黑洞的结构特性和光度特征来确定暗物质亚halos 的总质量和半质量半径。GBDT 不需要数据预处理,与神经网络相比性能更好。根据梯度提升决策树,估计子晕半径和质量的最重要特征分别是气体半径和黑洞质量。结合所有特征的方法获得了最高的测试精度--对于半径和质量,皮尔逊相关系数分别为 0.947 和 0.981,判定系数分别为 0.898 和 0.962,归一化中位绝对偏差分别为 0.111 和 0.114。我们对超出训练范围的质量和红移模型进行了评估,发现 GBDT 的外推能力明显优于神经网络。我们还在不同分辨率的模拟中测试了我们的模型,发现如果改变分辨率,差异在 10%以内。这项新颖的研究结合了气体和黑洞的结构参数,利用基于 ML 的方法确定了暗物质的属性。这项研究的良好结果证明,ML 工具可以改善我们目前对暗物质的理解,并回答一些基本的宇宙学问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Astronomy
New Astronomy 地学天文-天文与天体物理
CiteScore
4.00
自引率
10.00%
发文量
109
审稿时长
13.6 weeks
期刊介绍: New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation. New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.
期刊最新文献
Editorial Board Spectroscopic and photometric study for five late G- to K-type short-period contact binaries A robust assessment of the local anisotropy of the Hubble constant in the Pantheon+ sample A comprehensive study on the K2-type binary V1393 Tau in four-year observations The baryonic mass estimates of the Milky Way halo in the form of high-velocity clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1