{"title":"Fixed-time active fault-tolerant control for a class of nonlinear systems with intermittent faults and input saturation","authors":"Xuanrui Cheng, Ming Gao, Li Sheng, Yongli Wei","doi":"10.1016/j.jprocont.2024.103319","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the problem of fixed-time active fault-tolerant control is studied for systems with sector-bounded nonlinearities, intermittent faults, and input saturation. Since intermittent faults appear and disappear randomly, a fixed-time scheme is considered in the active fault-tolerant control algorithm, composed of detection, isolation, estimation, and the control unit. Utilizing homogeneity-based observers, the fixed-time state estimation is available in the presence of unknown but bounded disturbances, and a fault diagnosis unit is proposed. An input saturation compensator is introduced to analyze the effect of input saturation, and its auxiliary variables are used in the reconfigurable control law. The fault-tolerant controller, which is constructed via the information provided by the fault diagnosis unit and saturation compensator, has two switching modes. As a consequence, intermittent faults are compensated via the designed active fault-tolerant control method and the system reaches practical stability with the entire convergence time bounded in a fixed time. Finally, the example of a heat control system is exploited to demonstrate the effectiveness of the developed active fault-tolerant control scheme.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"143 ","pages":"Article 103319"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001598","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the problem of fixed-time active fault-tolerant control is studied for systems with sector-bounded nonlinearities, intermittent faults, and input saturation. Since intermittent faults appear and disappear randomly, a fixed-time scheme is considered in the active fault-tolerant control algorithm, composed of detection, isolation, estimation, and the control unit. Utilizing homogeneity-based observers, the fixed-time state estimation is available in the presence of unknown but bounded disturbances, and a fault diagnosis unit is proposed. An input saturation compensator is introduced to analyze the effect of input saturation, and its auxiliary variables are used in the reconfigurable control law. The fault-tolerant controller, which is constructed via the information provided by the fault diagnosis unit and saturation compensator, has two switching modes. As a consequence, intermittent faults are compensated via the designed active fault-tolerant control method and the system reaches practical stability with the entire convergence time bounded in a fixed time. Finally, the example of a heat control system is exploited to demonstrate the effectiveness of the developed active fault-tolerant control scheme.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.