On the spectral density of fractional Ornstein–Uhlenbeck processes

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-10-01 DOI:10.1016/j.jeconom.2024.105872
Shuping Shi , Jun Yu , Chen Zhang
{"title":"On the spectral density of fractional Ornstein–Uhlenbeck processes","authors":"Shuping Shi ,&nbsp;Jun Yu ,&nbsp;Chen Zhang","doi":"10.1016/j.jeconom.2024.105872","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel and easy-to-implement method for accurately approximating the spectral density of discretely sampled fractional Ornstein–Uhlenbeck (fOU) processes. The method offers a substantial reduction in approximation error, particularly within the rough region of the fractional parameter <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>0</mn><mo>.</mo><mn>5</mn><mo>)</mo></mrow></mrow></math></span>. This approximate spectral density has the potential to enhance the performance of estimation methods and hypothesis testing that make use of spectral densities. We introduce the approximate Whittle maximum likelihood (AWML) method for discretely sampled fOU processes, utilizing the approximate spectral density, and demonstrate that the AWML estimator exhibits properties of consistency and asymptotic normality when <span><math><mrow><mi>H</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, akin to the conventional Whittle maximum likelihood method. Through extensive simulation studies, we show that AWML outperforms existing methods in terms of estimation accuracy in finite samples. We then apply the AWML method to the trading volume of 40 financial assets. Our empirical findings reveal that the estimated Hurst parameters for these assets fall within the range of 0.10 to 0.21, indicating a rough dynamic.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"245 1","pages":"Article 105872"},"PeriodicalIF":9.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002173","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel and easy-to-implement method for accurately approximating the spectral density of discretely sampled fractional Ornstein–Uhlenbeck (fOU) processes. The method offers a substantial reduction in approximation error, particularly within the rough region of the fractional parameter H(0,0.5). This approximate spectral density has the potential to enhance the performance of estimation methods and hypothesis testing that make use of spectral densities. We introduce the approximate Whittle maximum likelihood (AWML) method for discretely sampled fOU processes, utilizing the approximate spectral density, and demonstrate that the AWML estimator exhibits properties of consistency and asymptotic normality when H(0,1), akin to the conventional Whittle maximum likelihood method. Through extensive simulation studies, we show that AWML outperforms existing methods in terms of estimation accuracy in finite samples. We then apply the AWML method to the trading volume of 40 financial assets. Our empirical findings reveal that the estimated Hurst parameters for these assets fall within the range of 0.10 to 0.21, indicating a rough dynamic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论分数奥恩斯坦-乌伦贝克过程的谱密度
本文介绍了一种新颖且易于实施的方法,用于精确逼近离散采样分数奥恩斯坦-乌伦贝克(fOU)过程的谱密度。该方法大大减少了近似误差,尤其是在分数参数 H∈(0,0.5) 的粗糙区域内。这种近似谱密度有可能提高使用谱密度的估计方法和假设检验的性能。我们利用近似谱密度,为离散采样的 fOU 过程引入了近似惠特尔最大似然法(AWML),并证明当 H∈(0,1)时,AWML 估计器与传统惠特尔最大似然法类似,具有一致性和渐近正态性。通过大量的模拟研究,我们表明 AWML 在有限样本中的估计精度优于现有方法。然后,我们将 AWML 方法应用于 40 种金融资产的交易量。我们的实证研究结果表明,这些资产的赫斯特参数估计值在 0.10 到 0.21 之间,表明其具有粗略的动态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Inference in cluster randomized trials with matched pairs Why are replication rates so low? On the spectral density of fractional Ornstein–Uhlenbeck processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1