Tailoring eco-friendly siloxane-based electrolytes for high-performance lithium–sulfur batteries

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-10-24 DOI:10.1016/j.mseb.2024.117773
Ying Tian , Manxian Li , Huanhuan Chen , Kai Zhu , Jing Long, Weixiang Xie, Xiaochuan Chen, Xiaoyan Li, Junxiong Wu, Yuming Chen
{"title":"Tailoring eco-friendly siloxane-based electrolytes for high-performance lithium–sulfur batteries","authors":"Ying Tian ,&nbsp;Manxian Li ,&nbsp;Huanhuan Chen ,&nbsp;Kai Zhu ,&nbsp;Jing Long,&nbsp;Weixiang Xie,&nbsp;Xiaochuan Chen,&nbsp;Xiaoyan Li,&nbsp;Junxiong Wu,&nbsp;Yuming Chen","doi":"10.1016/j.mseb.2024.117773","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium–sulfur batteries (LSBs), with their ultra-high theoretical energy density (2600 Wh kg<sup>−1</sup>), are considered one of the most attractive high-energy batteries. However, the “shuttling effect” of polysulfides and the uncontrolled growth of lithium (Li) dendrites pose significant challenges to the practical implementation of LSBs. Herein, a lightweight and eco-friendly diethoxydimethylsilane (DEMS) is chosen as a multi-functional solvent for LSBs. The low polarity of DEMS promotes the “solid–solid” conversion of sulfurized polyacrylonitrile (SPAN) during charge–discharge processes, eliminating the shuttle effect of polysulfides. Moreover, the DEMS-based electrolyte enables highly reversible Li plating/stripping processes across a wide temperature range spanning from −20 to 60 °C. As a result, the Li/SPAN batteries using the DEMS electrolyte exhibit excellent cyclic stability at 0.2 C with retainable capacities of 524.4 mAh/g after 200 cycles, 598.8 mAh/g after 100 cycles, and 318.6 mAh/g after 50 cycles at 26, 60 and −20 °C, respectively. This study aims to identify low-cost and highly stable electrolytes through solvent screening to enhance the electrochemical performance of LSBs.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117773"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium–sulfur batteries (LSBs), with their ultra-high theoretical energy density (2600 Wh kg−1), are considered one of the most attractive high-energy batteries. However, the “shuttling effect” of polysulfides and the uncontrolled growth of lithium (Li) dendrites pose significant challenges to the practical implementation of LSBs. Herein, a lightweight and eco-friendly diethoxydimethylsilane (DEMS) is chosen as a multi-functional solvent for LSBs. The low polarity of DEMS promotes the “solid–solid” conversion of sulfurized polyacrylonitrile (SPAN) during charge–discharge processes, eliminating the shuttle effect of polysulfides. Moreover, the DEMS-based electrolyte enables highly reversible Li plating/stripping processes across a wide temperature range spanning from −20 to 60 °C. As a result, the Li/SPAN batteries using the DEMS electrolyte exhibit excellent cyclic stability at 0.2 C with retainable capacities of 524.4 mAh/g after 200 cycles, 598.8 mAh/g after 100 cycles, and 318.6 mAh/g after 50 cycles at 26, 60 and −20 °C, respectively. This study aims to identify low-cost and highly stable electrolytes through solvent screening to enhance the electrochemical performance of LSBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为高性能锂硫电池量身定制环保型硅氧烷基电解质
锂硫电池(LSB)具有超高的理论能量密度(2600 Wh kg-1),被认为是最具吸引力的高能电池之一。然而,多硫化物的 "穿梭效应 "和锂(Li)枝晶的不可控生长给 LSB 的实际应用带来了巨大挑战。在此,我们选择了一种轻质、环保的二乙氧基二甲基硅烷(DEMS)作为 LSB 的多功能溶剂。DEMS 的极性低,可在充放电过程中促进硫化聚丙烯腈(SPAN)的 "固-固 "转换,消除多硫化物的穿梭效应。此外,基于 DEMS 的电解质还能在 -20 至 60 °C 的宽温度范围内实现高度可逆的锂镀层/剥离过程。因此,使用 DEMS 电解质的锂/SPAN 电池在 0.2 C 下表现出卓越的循环稳定性,在 26、60 和 -20 °C 下循环 200 次后的可保持容量分别为 524.4 mAh/g、598.8 mAh/g、318.6 mAh/g。本研究旨在通过溶剂筛选确定低成本、高稳定性的电解质,以提高 LSB 的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Biocompatible Mn and Cu dual-doped ZnS nanosheets for enhanced the photocatalytic activity under sunlight irradiation for wastewater treatment and embedded with PVA polymer for reusability Study on the mechanism of photocatalytic activity enhancement of Ag/Ag3PO4/PDI-2 supramolecular Z-scheme heterojunction photocatalyst A comparative study on the lamella effect and properties of atomized iron powder and reduced iron powder in Fe-based soft magnetic composites Effect of temperature and capillary number on wettability and contact angle hysteresis of various materials. Modeling taking into account porosity Synthesis and enhanced electrical properties of Ag-doped α-Fe2O3 nanoparticles in PVA films for nanoelectronic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1