Maria Nazeer , Sawera Akbar , Sonia Zulfiqar , Norah Alomayrah , M. Naziruddin Khan , M.S. Al-Buriahi , Muhammad Farooq Warsi , Mehwish Akhtar
{"title":"CuO@3D graphene modified glassy carbon electrode towards the detection of Orange II and Rhodamine B","authors":"Maria Nazeer , Sawera Akbar , Sonia Zulfiqar , Norah Alomayrah , M. Naziruddin Khan , M.S. Al-Buriahi , Muhammad Farooq Warsi , Mehwish Akhtar","doi":"10.1016/j.mseb.2024.117770","DOIUrl":null,"url":null,"abstract":"<div><div>Synthetic dyes are illegally used in foodstuffs and cause serious health issues in humans due to their carcinogenic nature. To avoid serious health issues, it is compulsory to detect and remove even the minute quantities of these harmful dyes in foodstuffs. Electrochemical sensors are accredited as an efficient and promising platform for the robust and sensitive determination of food toxins in various foodstuffs. Therefore, an efficient, facile, and competent sensor is devised for the simultaneous detection of Orange II (OR II) and Rhodamine B (RhB) supported by rGO and CuO nanoparticles. The synergism between rGO’s immense surface area and the adsorption properties of CuO enhances selectivity and response time for the detection of OR II and RhB. This work elaborated the synthesis, characterization, and electrochemical behavior of CuO@3DGr electrode towards simultaneous sensing of OR II and RhB. Physicochemical techniques were utilized to validate the fabrication of targeted material. On the other hand, the electrochemical features of the developed sensor were characterized by cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). Differential pulse voltammetry technique was employed to detect simultaneously Orange II and Rhodamine B on the surface of bare (GCE), GO/GCE, CuO/GCE, and CuO@3DGr/GCE. Multi-analyte detection is possible with DPV, a sensitive electrochemical method. Based on each toxin’s specific electrochemical signature, the sensor may generate separate peaks by delivering a sequence of potential pulses and detecting the ensuing current. The parameters which influence the performance of the modified sensor were carefully evaluated. Under ambient conditions, the developed sensor exhibited excellent electrocatalytic activity in oxidation at 0.67 V of OR II and 0.96 V RhB with a low limit of detection 08 nM for OR II and 4.5 nM for RhB in Britton- Robinson buffer (BRB pH:7). The described methodology allowed a robust and fast analysis of food toxins in different foodstuff establishing this sensor as a novel tool for detecting food toxins. Tap water was used to analyze the practical applicability of developed electrode material and suitable results were achieved. These results showed that the as-synthesized novel electrochemical sensor has the potential for ultrasensitive determination and detection of toxins in different foodstuffs.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"310 ","pages":"Article 117770"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724005993","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic dyes are illegally used in foodstuffs and cause serious health issues in humans due to their carcinogenic nature. To avoid serious health issues, it is compulsory to detect and remove even the minute quantities of these harmful dyes in foodstuffs. Electrochemical sensors are accredited as an efficient and promising platform for the robust and sensitive determination of food toxins in various foodstuffs. Therefore, an efficient, facile, and competent sensor is devised for the simultaneous detection of Orange II (OR II) and Rhodamine B (RhB) supported by rGO and CuO nanoparticles. The synergism between rGO’s immense surface area and the adsorption properties of CuO enhances selectivity and response time for the detection of OR II and RhB. This work elaborated the synthesis, characterization, and electrochemical behavior of CuO@3DGr electrode towards simultaneous sensing of OR II and RhB. Physicochemical techniques were utilized to validate the fabrication of targeted material. On the other hand, the electrochemical features of the developed sensor were characterized by cyclic voltammetry (CV) and electron impedance spectroscopy (EIS). Differential pulse voltammetry technique was employed to detect simultaneously Orange II and Rhodamine B on the surface of bare (GCE), GO/GCE, CuO/GCE, and CuO@3DGr/GCE. Multi-analyte detection is possible with DPV, a sensitive electrochemical method. Based on each toxin’s specific electrochemical signature, the sensor may generate separate peaks by delivering a sequence of potential pulses and detecting the ensuing current. The parameters which influence the performance of the modified sensor were carefully evaluated. Under ambient conditions, the developed sensor exhibited excellent electrocatalytic activity in oxidation at 0.67 V of OR II and 0.96 V RhB with a low limit of detection 08 nM for OR II and 4.5 nM for RhB in Britton- Robinson buffer (BRB pH:7). The described methodology allowed a robust and fast analysis of food toxins in different foodstuff establishing this sensor as a novel tool for detecting food toxins. Tap water was used to analyze the practical applicability of developed electrode material and suitable results were achieved. These results showed that the as-synthesized novel electrochemical sensor has the potential for ultrasensitive determination and detection of toxins in different foodstuffs.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.