{"title":"Exploring the roles of numerical simulations and machine learning in multiscale paving materials analysis: Applications, challenges, best practices","authors":"Mahmoud Khadijeh, Cor Kasbergen, Sandra Erkens, Aikaterini Varveri","doi":"10.1016/j.cma.2024.117462","DOIUrl":null,"url":null,"abstract":"<div><div>The complex structure of bituminous mixtures ranging from nanoscale binder components to macroscale pavement performance requires a comprehensive approach to material characterization and performance prediction. This paper provides a critical analysis of advanced techniques in paving materials modeling. It focuses on four main approaches: finite element method (FEM), discrete element method (DEM), phase field method (PFM), and artificial neural networks (ANNs). The review highlights how these computational methods enable more accurate predictions of material behavior, from asphalt binder rheology to mixture performance, while reducing reliance on extensive empirical testing. Key advances, such as the smooth integration of information across multiple scales and the emergence of physics-informed neural networks (PINNs), are discussed as promising avenues for enhancing model accuracy and computational efficiency. This review not only provides a comprehensive overview of current methodologies but also outlines future research directions aimed at developing more sustainable, cost-effective, and durable paving solutions through advanced multiscale modeling techniques.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117462"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007175","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complex structure of bituminous mixtures ranging from nanoscale binder components to macroscale pavement performance requires a comprehensive approach to material characterization and performance prediction. This paper provides a critical analysis of advanced techniques in paving materials modeling. It focuses on four main approaches: finite element method (FEM), discrete element method (DEM), phase field method (PFM), and artificial neural networks (ANNs). The review highlights how these computational methods enable more accurate predictions of material behavior, from asphalt binder rheology to mixture performance, while reducing reliance on extensive empirical testing. Key advances, such as the smooth integration of information across multiple scales and the emergence of physics-informed neural networks (PINNs), are discussed as promising avenues for enhancing model accuracy and computational efficiency. This review not only provides a comprehensive overview of current methodologies but also outlines future research directions aimed at developing more sustainable, cost-effective, and durable paving solutions through advanced multiscale modeling techniques.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.