Study on vortex structure and hydrodynamic characteristics of water-exit projectile with shoulder ventilation

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL Ocean Engineering Pub Date : 2024-10-25 DOI:10.1016/j.oceaneng.2024.119622
Zhaoyu Qu , Jie Cui , Xin Chen , Xionghong Huang , Guihui Ma , Guanhao Qiu
{"title":"Study on vortex structure and hydrodynamic characteristics of water-exit projectile with shoulder ventilation","authors":"Zhaoyu Qu ,&nbsp;Jie Cui ,&nbsp;Xin Chen ,&nbsp;Xionghong Huang ,&nbsp;Guihui Ma ,&nbsp;Guanhao Qiu","doi":"10.1016/j.oceaneng.2024.119622","DOIUrl":null,"url":null,"abstract":"<div><div>During the vertical motion of a water-exit projectile, the gas stored inside is expelled from the shoulder under the effect of pressure differential, forming a ventilated cavity covering the surface of the projectile. This paper explores the vortex structure characteristics of the surface ventilated cavity through numerical simulation and summarizes its impact on the hydrodynamic characteristics of the water-exit projectile. It was found that the end of the shoulder ventilated cavity presents a periodic vortex shedding form. And the existence of the shoulder ventilated cavity can reduce the vertical resistance of the projectile, improve the vertical movement speed, and play a role in load reduction and drag reduction. Additionally, the lateral displacement of the projectile at the moment of water exit decreases by approximately 45.2%, and the deviation angle reduces by about 55.6%, significantly improving the stabilization of its water exit posture. This indicates that the presence of the shoulder ventilated cavity can effectively enhance the hydrodynamic performance of the projectile.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824029603","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

During the vertical motion of a water-exit projectile, the gas stored inside is expelled from the shoulder under the effect of pressure differential, forming a ventilated cavity covering the surface of the projectile. This paper explores the vortex structure characteristics of the surface ventilated cavity through numerical simulation and summarizes its impact on the hydrodynamic characteristics of the water-exit projectile. It was found that the end of the shoulder ventilated cavity presents a periodic vortex shedding form. And the existence of the shoulder ventilated cavity can reduce the vertical resistance of the projectile, improve the vertical movement speed, and play a role in load reduction and drag reduction. Additionally, the lateral displacement of the projectile at the moment of water exit decreases by approximately 45.2%, and the deviation angle reduces by about 55.6%, significantly improving the stabilization of its water exit posture. This indicates that the presence of the shoulder ventilated cavity can effectively enhance the hydrodynamic performance of the projectile.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带肩部通风装置的出水弹丸的涡流结构和流体力学特性研究
出水弹丸在垂直运动过程中,内部贮存的气体在压差作用下从弹丸肩部排出,形成覆盖弹丸表面的通风空腔。本文通过数值模拟探讨了表面通风腔的涡旋结构特征,并总结了其对出水弹流体力学特性的影响。研究发现,肩部通风空腔的末端呈现周期性的涡流脱落形式。而肩部通风腔的存在可以减小弹丸的垂直阻力,提高垂直运动速度,起到减载和减阻的作用。此外,弹丸出水瞬间的侧向位移减小了约 45.2%,偏角减小了约 55.6%,出水姿态的稳定性显著提高。这表明,肩部通风腔的存在可以有效提高弹丸的水动力性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
期刊最新文献
Survey of AI-driven routing protocols in underwater acoustic networks for enhanced communication efficiency Enhanced digital twin framework for real-time prediction of fatigue damage on semi-submersible platforms under long-term multi-sea conditions Real-time prediction of full-scale ship maneuvering motions at sea under random rudder actions based on BiLSTM-SAT hybrid method Data-driven model assessment: A comparative study for ship response determination Numerical study of the effect of vegetation submerged ratio on turbulence characteristics in sediment-laden flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1