{"title":"Hands-on analysis of using large language models for the auto evaluation of programming assignments","authors":"Kareem Mohamed , Mina Yousef , Walaa Medhat , Ensaf Hussein Mohamed , Ghada Khoriba , Tamer Arafa","doi":"10.1016/j.is.2024.102473","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing adoption of programming education necessitates efficient and accurate methods for evaluating students’ coding assignments. Traditional manual grading is time-consuming, often inconsistent, and prone to subjective biases. This paper explores the application of large language models (LLMs) for the automated evaluation of programming assignments. LLMs can use advanced natural language processing capabilities to assess code quality, functionality, and adherence to best practices, providing detailed feedback and grades. We demonstrate the effectiveness of LLMs through experiments comparing their performance with human evaluators across various programming tasks. Our study evaluates the performance of several LLMs for automated grading. Gemini 1.5 Pro achieves an exact match accuracy of 86% and a <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> accuracy of 98%. GPT-4o also demonstrates strong performance, with exact match and <span><math><mrow><mo>±</mo><mn>1</mn></mrow></math></span> accuracies of 69% and 97%, respectively. Both models correlate highly with human evaluations, indicating their potential for reliable automated grading. However, models such as Llama 3 70B and Mixtral 8 <span><math><mo>×</mo></math></span> 7B exhibit low accuracy and alignment with human grading, particularly in problem-solving tasks. These findings suggest that advanced LLMs are instrumental in scalable, automated educational assessment. Additionally, LLMs enhance the learning experience by offering personalized, instant feedback, fostering an iterative learning process. The findings suggest that LLMs could play a pivotal role in the future of programming education, ensuring scalability and consistency in evaluation.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"128 ","pages":"Article 102473"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001315","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing adoption of programming education necessitates efficient and accurate methods for evaluating students’ coding assignments. Traditional manual grading is time-consuming, often inconsistent, and prone to subjective biases. This paper explores the application of large language models (LLMs) for the automated evaluation of programming assignments. LLMs can use advanced natural language processing capabilities to assess code quality, functionality, and adherence to best practices, providing detailed feedback and grades. We demonstrate the effectiveness of LLMs through experiments comparing their performance with human evaluators across various programming tasks. Our study evaluates the performance of several LLMs for automated grading. Gemini 1.5 Pro achieves an exact match accuracy of 86% and a accuracy of 98%. GPT-4o also demonstrates strong performance, with exact match and accuracies of 69% and 97%, respectively. Both models correlate highly with human evaluations, indicating their potential for reliable automated grading. However, models such as Llama 3 70B and Mixtral 8 7B exhibit low accuracy and alignment with human grading, particularly in problem-solving tasks. These findings suggest that advanced LLMs are instrumental in scalable, automated educational assessment. Additionally, LLMs enhance the learning experience by offering personalized, instant feedback, fostering an iterative learning process. The findings suggest that LLMs could play a pivotal role in the future of programming education, ensuring scalability and consistency in evaluation.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.