PCSK9 Antibodies Treatment Specifically Enhances the Macrophage-specific Reverse Cholesterol Transport Pathway in Heterozygous Familial Hypercholesterolemia
Carla Borràs MSc , Marina Canyelles PhD , Josefa Girona PhD , Daiana Ibarretxe MD, PhD , David Santos BS , Giovanna Revilla PhD , Vicenta Llorente-Cortes PhD , Noemí Rotllan PhD , Petri T. Kovanen MD, PhD , Matti Jauhiainen PhD , Miriam Lee-Rueckert PhD , Luis Masana MD, PhD , Francisco Arrieta MD, PhD , Javier Martínez-Botas PhD , Diego Gómez-Coronado PhD , Josep Ribalta PhD , Mireia Tondo PhD , Francisco Blanco-Vaca MD, PhD , Joan Carles Escolà-Gil PhD
{"title":"PCSK9 Antibodies Treatment Specifically Enhances the Macrophage-specific Reverse Cholesterol Transport Pathway in Heterozygous Familial Hypercholesterolemia","authors":"Carla Borràs MSc , Marina Canyelles PhD , Josefa Girona PhD , Daiana Ibarretxe MD, PhD , David Santos BS , Giovanna Revilla PhD , Vicenta Llorente-Cortes PhD , Noemí Rotllan PhD , Petri T. Kovanen MD, PhD , Matti Jauhiainen PhD , Miriam Lee-Rueckert PhD , Luis Masana MD, PhD , Francisco Arrieta MD, PhD , Javier Martínez-Botas PhD , Diego Gómez-Coronado PhD , Josep Ribalta PhD , Mireia Tondo PhD , Francisco Blanco-Vaca MD, PhD , Joan Carles Escolà-Gil PhD","doi":"10.1016/j.jacbts.2024.06.008","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the potential of proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies to restore macrophage cholesterol efflux in subjects with heterozygous familial hypercholesterolemia (FH) and to enhance the macrophage-specific reverse cholesterol transport pathway in mice. Analyses of macrophage-derived cholesterol distribution of plasma from FH patients revealed that low-density lipoprotein (LDL) particles contained less, and high-density lipoprotein particles contained more radiolabeled cholesterol after treatment with either PCSK9 inhibitor. PCSK9 antibodies facilitated the transfer of macrophage-derived cholesterol and LDL-derived cholesterol to feces exclusively in heterozygous LDL receptor-deficient mice expressing human APOB100. PCSK9 inhibitors act as positive regulators of the macrophage-specific reverse cholesterol transport pathway in individuals with heterozygous FH.</div></div>","PeriodicalId":14831,"journal":{"name":"JACC: Basic to Translational Science","volume":"9 10","pages":"Pages 1195-1210"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC: Basic to Translational Science","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452302X24002535","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the potential of proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies to restore macrophage cholesterol efflux in subjects with heterozygous familial hypercholesterolemia (FH) and to enhance the macrophage-specific reverse cholesterol transport pathway in mice. Analyses of macrophage-derived cholesterol distribution of plasma from FH patients revealed that low-density lipoprotein (LDL) particles contained less, and high-density lipoprotein particles contained more radiolabeled cholesterol after treatment with either PCSK9 inhibitor. PCSK9 antibodies facilitated the transfer of macrophage-derived cholesterol and LDL-derived cholesterol to feces exclusively in heterozygous LDL receptor-deficient mice expressing human APOB100. PCSK9 inhibitors act as positive regulators of the macrophage-specific reverse cholesterol transport pathway in individuals with heterozygous FH.
期刊介绍:
JACC: Basic to Translational Science is an open access journal that is part of the renowned Journal of the American College of Cardiology (JACC). It focuses on advancing the field of Translational Cardiovascular Medicine and aims to accelerate the translation of new scientific discoveries into therapies that improve outcomes for patients with or at risk for Cardiovascular Disease. The journal covers thematic areas such as pre-clinical research, clinical trials, personalized medicine, novel drugs, devices, and biologics, proteomics, genomics, and metabolomics, as well as early phase clinical trial methodology.