{"title":"A model of light pseudoscalar dark matter","authors":"Shreyashi Chakdar , Dilip Kumar Ghosh , P.Q. Hung , Najimuddin Khan , Dibyendu Nanda","doi":"10.1016/j.nuclphysb.2024.116721","DOIUrl":null,"url":null,"abstract":"<div><div>The EW-<span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span> model was constructed in order to provide a seesaw scenario operating at the Electroweak scale <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>E</mi><mi>W</mi></mrow></msub><mo>∼</mo><mn>246</mn></math></span> GeV, keeping the same SM gauge structure. In this model, right-handed neutrinos are non-sterile and have masses of the order <span><math><msub><mrow><mi>Λ</mi></mrow><mrow><mi>E</mi><mi>W</mi></mrow></msub></math></span>. They can be searched for at the LHC along with heavy mirror quarks and leptons, the lightest of which has large decay lengths. The model also incorporates a rich scalar sector, consistent with various experimental constraints, predicts a ∼125 GeV scalar with the SM Higgs characteristics satisfying the current LHC Higgs boson data. The seesaw mechanism requires the existence of a complex scalar which is singlet under the SM gauge group. The imaginary part of this complex scalar denoted by <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> is proposed to be the sub-MeV dark matter candidate in this manuscript. We find that the sub-MeV scalar can serve as a viable non-thermal feebly interacting massive particle (FIMP)-DM candidate. This <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>0</mn></mrow></msubsup></math></span> can be a naturally light sub-MeV DM candidate due to its nature as a pseudo-Nambu-Goldstone (PNG) boson in the model. We show that the well-studied freeze out mechanism falls short in this particular framework producing DM overabundance. We identify that the freeze in mechanism produces the correct order of relic density for the sub-MeV DM candidate satisfying all applicable constraints. We also discuss the allowed parameter space arising from the current indirect search bounds for this sub-MeV DM.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116721"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002876","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The EW- model was constructed in order to provide a seesaw scenario operating at the Electroweak scale GeV, keeping the same SM gauge structure. In this model, right-handed neutrinos are non-sterile and have masses of the order . They can be searched for at the LHC along with heavy mirror quarks and leptons, the lightest of which has large decay lengths. The model also incorporates a rich scalar sector, consistent with various experimental constraints, predicts a ∼125 GeV scalar with the SM Higgs characteristics satisfying the current LHC Higgs boson data. The seesaw mechanism requires the existence of a complex scalar which is singlet under the SM gauge group. The imaginary part of this complex scalar denoted by is proposed to be the sub-MeV dark matter candidate in this manuscript. We find that the sub-MeV scalar can serve as a viable non-thermal feebly interacting massive particle (FIMP)-DM candidate. This can be a naturally light sub-MeV DM candidate due to its nature as a pseudo-Nambu-Goldstone (PNG) boson in the model. We show that the well-studied freeze out mechanism falls short in this particular framework producing DM overabundance. We identify that the freeze in mechanism produces the correct order of relic density for the sub-MeV DM candidate satisfying all applicable constraints. We also discuss the allowed parameter space arising from the current indirect search bounds for this sub-MeV DM.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.