Ting-Ting Yuan , Qing-Ling Shu , Si-Bao Chen , Li-Li Huang, Bin Luo
{"title":"Instant pose extraction based on mask transformer for occluded person re-identification","authors":"Ting-Ting Yuan , Qing-Ling Shu , Si-Bao Chen , Li-Li Huang, Bin Luo","doi":"10.1016/j.patcog.2024.111082","DOIUrl":null,"url":null,"abstract":"<div><div>Re-Identification (Re-ID) of obscured pedestrians is a daunting task, primarily due to the frequent occlusion caused by various obstacles like buildings, vehicles, and even other pedestrians. To address this challenge, we propose a novel approach named Instant Pose Extraction based on Mask Transformer (MTIPE), tailored specifically for occluded person Re-ID. MTIPE consists of several new modules: a Mask Aware Module (MAM) for alignment between the overall prototype and the occluded image; a Multi-headed Attention Constraint Module (MACM) to enrich the feature representation; a Pose Aggregation Module (PAM) to separate useful human information from the occlusion noise; a Feature Matching Module (FMM) in matching non-occluded parts; introduction of learnable local prototypes in the defined local prototype-based transformer decoder; a Pooling Attention Module (PAM) instead of traditional self-attention module to better extract and propagate local contextual information; and Pose Key-points Loss to better match non-occluded body parts. Through comprehensive experimental evaluations and comparisons, MTIPE demonstrates encouraging performance improvements in both occluded and holistic person Re-ID tasks. Its results surpass or at least match those of current state-of-the-art methods in various aspects, highlighting its potential advantages and promising application prospects.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111082"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008331","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Re-Identification (Re-ID) of obscured pedestrians is a daunting task, primarily due to the frequent occlusion caused by various obstacles like buildings, vehicles, and even other pedestrians. To address this challenge, we propose a novel approach named Instant Pose Extraction based on Mask Transformer (MTIPE), tailored specifically for occluded person Re-ID. MTIPE consists of several new modules: a Mask Aware Module (MAM) for alignment between the overall prototype and the occluded image; a Multi-headed Attention Constraint Module (MACM) to enrich the feature representation; a Pose Aggregation Module (PAM) to separate useful human information from the occlusion noise; a Feature Matching Module (FMM) in matching non-occluded parts; introduction of learnable local prototypes in the defined local prototype-based transformer decoder; a Pooling Attention Module (PAM) instead of traditional self-attention module to better extract and propagate local contextual information; and Pose Key-points Loss to better match non-occluded body parts. Through comprehensive experimental evaluations and comparisons, MTIPE demonstrates encouraging performance improvements in both occluded and holistic person Re-ID tasks. Its results surpass or at least match those of current state-of-the-art methods in various aspects, highlighting its potential advantages and promising application prospects.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.