Changsheng Ma , Achyut Shankar , Saru Kumari , Chien-Ming Chen
{"title":"A lightweight BRLWE-based post-quantum cryptosystem with side-channel resilience for IoT security","authors":"Changsheng Ma , Achyut Shankar , Saru Kumari , Chien-Ming Chen","doi":"10.1016/j.iot.2024.101391","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancement of quantum computing poses a significant threat to conventional cryptographic systems, particularly in the context of Internet of Things (IoT) security. This paper introduces PQ-IoTCrypt, a lightweight post-quantum cryptosystem for resource-constrained IoT devices. PQ-IoTCrypt builds upon the binary ring learning with errors problem, incorporating optimizations for efficient implementation on 8-bit microcontrollers commonly found in IoT environments. We introduce a symmetric discrete uniform distribution and streamlined polynomial arithmetic to reduce computational overhead while maintaining a high-security level. Additionally, we present a comprehensive power side-channel analysis framework for lattice-based post-quantum cryptography, demonstrating PQ-IoTCrypt's resilience against various side-channel attacks, including advanced ciphertext selection criteria, IoT-optimized template creation, and a hierarchical chosen-ciphertext attack methodology tailored for IoT deployments. Experimental results show that PQ-IoTCrypt achieves a 9.9% reduction in total encryption time compared to the next best baseline at the 256-bit security level while requiring significantly fewer ciphertexts for successful attacks. PQ-IoTCrypt demonstrates superior performance in key generation, encryption, and decryption processes, with times reduced by 12.7 %, 9.1 %, and 9.2 %, respectively, compared to the closest competitor. This work contributes to the standardization efforts of post-quantum IoT security and offers valuable insights for real-world deployment of quantum-resistant cryptography in resource-limited settings.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524003329","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of quantum computing poses a significant threat to conventional cryptographic systems, particularly in the context of Internet of Things (IoT) security. This paper introduces PQ-IoTCrypt, a lightweight post-quantum cryptosystem for resource-constrained IoT devices. PQ-IoTCrypt builds upon the binary ring learning with errors problem, incorporating optimizations for efficient implementation on 8-bit microcontrollers commonly found in IoT environments. We introduce a symmetric discrete uniform distribution and streamlined polynomial arithmetic to reduce computational overhead while maintaining a high-security level. Additionally, we present a comprehensive power side-channel analysis framework for lattice-based post-quantum cryptography, demonstrating PQ-IoTCrypt's resilience against various side-channel attacks, including advanced ciphertext selection criteria, IoT-optimized template creation, and a hierarchical chosen-ciphertext attack methodology tailored for IoT deployments. Experimental results show that PQ-IoTCrypt achieves a 9.9% reduction in total encryption time compared to the next best baseline at the 256-bit security level while requiring significantly fewer ciphertexts for successful attacks. PQ-IoTCrypt demonstrates superior performance in key generation, encryption, and decryption processes, with times reduced by 12.7 %, 9.1 %, and 9.2 %, respectively, compared to the closest competitor. This work contributes to the standardization efforts of post-quantum IoT security and offers valuable insights for real-world deployment of quantum-resistant cryptography in resource-limited settings.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.