Adriele Sabrina Todero , Fabiana de Oliveira Pereira , Paloma Truccolo Reato , Diana Finkler , Alexander Junges , Rogério Marcos Dallago , Katia Bernardo-Gusmão , Marcelo Luis Mignoni
{"title":"Synthesis and reactivity of Nb/graphene-MCM-48 and Al/graphene-MCM-48 IN CO2 chemical fixation","authors":"Adriele Sabrina Todero , Fabiana de Oliveira Pereira , Paloma Truccolo Reato , Diana Finkler , Alexander Junges , Rogério Marcos Dallago , Katia Bernardo-Gusmão , Marcelo Luis Mignoni","doi":"10.1016/j.cattod.2024.115085","DOIUrl":null,"url":null,"abstract":"<div><div>Mesoporous materials such as the <em>Mobil Composition of Matter</em> (MCM), play a crucial role in the chemical fixation of carbon dioxide (CO<sub>2</sub>). These materials exhibit a porous structure with intermediate-sized pores, providing a high surface area and a uniform pore distribution. The objective of this study is to synthesize the mesoporous material MCM-48 using the ionic solid chloride of 1-hexadecyl-3-methylimidazolium ([C16MI]Cl) as a directing agent and tetraethoxysilane (TEOS) as a silica precursor and apply this material as a catalyst in the cycloaddition reaction of CO2 to propylene oxide to produce propylene carbonate. Compounds such as graphene, aluminum, and niobium are employed in different Si/compound molar ratios (1, 5, and 10) to enhance the material properties. The Nb/Graphene-MCM-48 material with a Si/Nb ratio of 10 demonstrated the best catalytic performance in the CO<sub>2</sub> cycloaddition, achieving a yield of 85 % and a selectivity of 99 % for propylene carbonate. The results demonstrate that MCMs are highly efficient in the selective conversion of CO2 into cyclic carbonate, offering promising applications for CO<sub>2</sub> emission mitigation. This study advances decarbonization and sustainable development, aligning with the Sustainable Development Goals (SDGs) 3 (Good Health and Well-Being), 9 (Industry, Innovation, and Infrastructure), 12 (Responsible Consumption and Production), and 15 (Life on Land) by promoting technologies that reduce environmental impact and support sustainable industrial practices.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"445 ","pages":"Article 115085"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586124005790","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Mesoporous materials such as the Mobil Composition of Matter (MCM), play a crucial role in the chemical fixation of carbon dioxide (CO2). These materials exhibit a porous structure with intermediate-sized pores, providing a high surface area and a uniform pore distribution. The objective of this study is to synthesize the mesoporous material MCM-48 using the ionic solid chloride of 1-hexadecyl-3-methylimidazolium ([C16MI]Cl) as a directing agent and tetraethoxysilane (TEOS) as a silica precursor and apply this material as a catalyst in the cycloaddition reaction of CO2 to propylene oxide to produce propylene carbonate. Compounds such as graphene, aluminum, and niobium are employed in different Si/compound molar ratios (1, 5, and 10) to enhance the material properties. The Nb/Graphene-MCM-48 material with a Si/Nb ratio of 10 demonstrated the best catalytic performance in the CO2 cycloaddition, achieving a yield of 85 % and a selectivity of 99 % for propylene carbonate. The results demonstrate that MCMs are highly efficient in the selective conversion of CO2 into cyclic carbonate, offering promising applications for CO2 emission mitigation. This study advances decarbonization and sustainable development, aligning with the Sustainable Development Goals (SDGs) 3 (Good Health and Well-Being), 9 (Industry, Innovation, and Infrastructure), 12 (Responsible Consumption and Production), and 15 (Life on Land) by promoting technologies that reduce environmental impact and support sustainable industrial practices.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.