Li Zhou , Yongpeng Cui , Pengchao Niu , Lina Ge , Rumeng Zheng , Shihao Liang , Wei Xing
{"title":"Biomass-derived hard carbon material for high-capacity sodium-ion battery anode through structure regulation","authors":"Li Zhou , Yongpeng Cui , Pengchao Niu , Lina Ge , Rumeng Zheng , Shihao Liang , Wei Xing","doi":"10.1016/j.carbon.2024.119733","DOIUrl":null,"url":null,"abstract":"<div><div>Economical and environmentally friendly hard carbon materials are attractive options for high-performance sodium-ion battery anode materials. Biomass-derived hard carbon materials have good economic benefits and environmentally friendliness as anode materials for sodium-ion batteries. In this work, we propose a new hard carbon material prepared from agricultural waste olive shells through a simple and environmentally friendly process. The effects of high-temperature treatments and pre-carbonization strategies on the pore structure and graphitization degree of the hard carbon materials were investigated. Combined with electrochemical performance tests, the influence of structural changes on the sodium storage properties of the olive shell-derived hard carbon was revealed. Under the optimized conditions of carbonization temperature and pre-carbonization strategy, the OSHC-Air electrode exhibits excellent sodium storage capacity with 87 % capacity remaining after 1000 cycles at 1000 mA g<sup>−1</sup>. The assembled PB//OSHC-Air sodium-ion full cell exhibits a high capacity of 216 mAh g<sup>−1</sup>. Our research provides a potential candidate for commercial anode materials for high-capacity sodium-ion batteries.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"231 ","pages":"Article 119733"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009527","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Economical and environmentally friendly hard carbon materials are attractive options for high-performance sodium-ion battery anode materials. Biomass-derived hard carbon materials have good economic benefits and environmentally friendliness as anode materials for sodium-ion batteries. In this work, we propose a new hard carbon material prepared from agricultural waste olive shells through a simple and environmentally friendly process. The effects of high-temperature treatments and pre-carbonization strategies on the pore structure and graphitization degree of the hard carbon materials were investigated. Combined with electrochemical performance tests, the influence of structural changes on the sodium storage properties of the olive shell-derived hard carbon was revealed. Under the optimized conditions of carbonization temperature and pre-carbonization strategy, the OSHC-Air electrode exhibits excellent sodium storage capacity with 87 % capacity remaining after 1000 cycles at 1000 mA g−1. The assembled PB//OSHC-Air sodium-ion full cell exhibits a high capacity of 216 mAh g−1. Our research provides a potential candidate for commercial anode materials for high-capacity sodium-ion batteries.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.