Rucheng Jiang , Bin Fu , Renfa Li , Rui Li , Danny Z. Chen , Yan Liu , Guoqi Xie , Keqin Li
{"title":"A dual-branch convolutional neural network with domain-informed attention for arrhythmia classification of 12-lead electrocardiograms","authors":"Rucheng Jiang , Bin Fu , Renfa Li , Rui Li , Danny Z. Chen , Yan Liu , Guoqi Xie , Keqin Li","doi":"10.1016/j.engappai.2024.109480","DOIUrl":null,"url":null,"abstract":"<div><div>The automatic classification of arrhythmia is an important task in the intelligent auxiliary diagnosis of an electrocardiogram. Its efficiency and accuracy are vital for practical deployment and applications in the medical field. For the 12-lead electrocardiogram, we know that the comprehensive utilization of lead characteristics is key to enhancing diagnostic accuracy. However, existing classification methods (1) neglect the similarities and differences between the limb lead group and the precordial lead group; (2) the commonly adopted attention mechanisms struggle to capture the domain characteristics in an electrocardiogram. To address these issues, we propose a new dual-branch convolutional neural network with domain-informed attention, which is novel in two ways. First, it adopts a dual-branch network to extract intra-group similarities and inter-group differences of limb and precordial leads. Second, it proposes a domain-informed attention mechanism to embed the critical domain knowledge of electrocardiogram, multiple RR (R wave to R wave) intervals, into coordinated attention to adaptively assign attention weights to key segments, thereby effectively capturing the characteristics of the electrocardiogram domain. Experimental results show that our method achieves an F1-score of 0.905 and a macro area under the curve of 0.936 on two widely used large-scale datasets, respectively. Compared to state-of-the-art methods, our method shows significant performance improvements with a drastic reduction in model parameters.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016385","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The automatic classification of arrhythmia is an important task in the intelligent auxiliary diagnosis of an electrocardiogram. Its efficiency and accuracy are vital for practical deployment and applications in the medical field. For the 12-lead electrocardiogram, we know that the comprehensive utilization of lead characteristics is key to enhancing diagnostic accuracy. However, existing classification methods (1) neglect the similarities and differences between the limb lead group and the precordial lead group; (2) the commonly adopted attention mechanisms struggle to capture the domain characteristics in an electrocardiogram. To address these issues, we propose a new dual-branch convolutional neural network with domain-informed attention, which is novel in two ways. First, it adopts a dual-branch network to extract intra-group similarities and inter-group differences of limb and precordial leads. Second, it proposes a domain-informed attention mechanism to embed the critical domain knowledge of electrocardiogram, multiple RR (R wave to R wave) intervals, into coordinated attention to adaptively assign attention weights to key segments, thereby effectively capturing the characteristics of the electrocardiogram domain. Experimental results show that our method achieves an F1-score of 0.905 and a macro area under the curve of 0.936 on two widely used large-scale datasets, respectively. Compared to state-of-the-art methods, our method shows significant performance improvements with a drastic reduction in model parameters.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.