Explainable artificial intelligence of tree-based algorithms for fault detection and diagnosis in grid-connected photovoltaic systems

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-10-28 DOI:10.1016/j.engappai.2024.109503
Hassan N. Noura , Zaid Allal , Ola Salman , Khaled Chahine
{"title":"Explainable artificial intelligence of tree-based algorithms for fault detection and diagnosis in grid-connected photovoltaic systems","authors":"Hassan N. Noura ,&nbsp;Zaid Allal ,&nbsp;Ola Salman ,&nbsp;Khaled Chahine","doi":"10.1016/j.engappai.2024.109503","DOIUrl":null,"url":null,"abstract":"<div><div>A grid-connected photovoltaic system integrates solar panels with the utility grid through a power inverter unit, allowing them to operate in parallel with the grid. Commonly known as grid-tied or on-grid solar systems, these configurations enable panels to feed electrical energy back into the grid, offering simplicity, low operating and maintenance costs, and reduced electricity bills. Despite these advantages, this environmentally friendly energy solution is still susceptible to downtimes and faults. This study utilizes advanced machine learning tree-based algorithms for fault detection and diagnosis in such systems with the goal of maintaining reliability, improving performance, and ensuring optimal energy generation. Specifically, the research investigates the effectiveness of Extra Trees as a fault detection and diagnosis algorithm through an efficient two-phase framework that consists of a binary fault detection phase followed by a multi-class fault diagnosis phase, achieving respective accuracies of 99.5% and 98.7%. In addition, the study underscores the importance of oversampling in improving results, particularly for imbalanced datasets. Moreover, explainable artificial intelligence is employed to enhance transparency in the model’s output and sensitivity to specific features in a given order. Remarkably, the findings align directly with results obtained from techniques such as feature importance averaging and incremental feature accuracy tracking. The research unveils a highly scalable, lightweight, and simple framework for fault detection and diagnosis in grid-connected photovoltaic systems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016610","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A grid-connected photovoltaic system integrates solar panels with the utility grid through a power inverter unit, allowing them to operate in parallel with the grid. Commonly known as grid-tied or on-grid solar systems, these configurations enable panels to feed electrical energy back into the grid, offering simplicity, low operating and maintenance costs, and reduced electricity bills. Despite these advantages, this environmentally friendly energy solution is still susceptible to downtimes and faults. This study utilizes advanced machine learning tree-based algorithms for fault detection and diagnosis in such systems with the goal of maintaining reliability, improving performance, and ensuring optimal energy generation. Specifically, the research investigates the effectiveness of Extra Trees as a fault detection and diagnosis algorithm through an efficient two-phase framework that consists of a binary fault detection phase followed by a multi-class fault diagnosis phase, achieving respective accuracies of 99.5% and 98.7%. In addition, the study underscores the importance of oversampling in improving results, particularly for imbalanced datasets. Moreover, explainable artificial intelligence is employed to enhance transparency in the model’s output and sensitivity to specific features in a given order. Remarkably, the findings align directly with results obtained from techniques such as feature importance averaging and incremental feature accuracy tracking. The research unveils a highly scalable, lightweight, and simple framework for fault detection and diagnosis in grid-connected photovoltaic systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于并网光伏系统故障检测和诊断的树型算法的可解释人工智能
并网光伏系统通过电力逆变器装置将太阳能电池板与公用电网整合在一起,使其能够与电网并网运行。这些配置通常被称为并网型或并网型太阳能系统,可使太阳能电池板将电能反馈给电网,从而提供简便性、低运行和维护成本,并减少电费支出。尽管有这些优点,但这种环保能源解决方案仍然容易出现停机和故障。本研究利用先进的基于机器学习树的算法对此类系统进行故障检测和诊断,目的是保持可靠性、提高性能并确保最佳发电效果。具体来说,该研究通过一个高效的两阶段框架(包括二进制故障检测阶段和多类故障诊断阶段),研究了 Extra Trees 作为故障检测和诊断算法的有效性,其准确率分别达到 99.5% 和 98.7%。此外,该研究还强调了超采样对改善结果的重要性,尤其是对不平衡数据集而言。此外,还采用了可解释人工智能,以提高模型输出的透明度和对特定顺序的特定特征的敏感性。值得注意的是,研究结果与特征重要性平均法和增量特征准确性跟踪等技术得出的结果直接吻合。这项研究为并网光伏系统的故障检测和诊断揭开了一个高度可扩展、轻量级和简单的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1