{"title":"Advancing MRI segmentation with CLIP-driven semi-supervised learning and semantic alignment","authors":"","doi":"10.1016/j.neucom.2024.128690","DOIUrl":null,"url":null,"abstract":"<div><div>Precise segmentation and reconstruction of multi-structures within MRI are crucial for clinical applications such as surgical navigation. However, medical image segmentation faces several challenges. Although semi-supervised methods can reduce the annotation workload, they often suffer from limited robustness. To address this issue, this study proposes a novel CLIP-driven semi-supervised model, that includes two branches and a module. In the image branch, copy-paste is used as data augmentation method to enhance consistency learning. In the text branch, patient-level information is encoded via CLIP to drive the image branch. Notably, a novel cross-modal fusion module is designed to enhance the alignment and representation of text and image. Additionally, a semantic spatial alignment module is introduced to register segmentation results from different axial MRIs into a unified space. Three multi-modal datasets (one private and two public) were constructed to demonstrate the model’s performance. Compared to previous state-of-the-art methods, this model shows a significant advantage with both 5% and 10% labeled data. This study constructs a robust semi-supervised medical segmentation model, particularly effective in addressing label inconsistency and abnormal organ deformations. It also tackles the axial non-orthogonality challenges inherent in MRI, providing a consistent view of multi-structures.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014619","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Precise segmentation and reconstruction of multi-structures within MRI are crucial for clinical applications such as surgical navigation. However, medical image segmentation faces several challenges. Although semi-supervised methods can reduce the annotation workload, they often suffer from limited robustness. To address this issue, this study proposes a novel CLIP-driven semi-supervised model, that includes two branches and a module. In the image branch, copy-paste is used as data augmentation method to enhance consistency learning. In the text branch, patient-level information is encoded via CLIP to drive the image branch. Notably, a novel cross-modal fusion module is designed to enhance the alignment and representation of text and image. Additionally, a semantic spatial alignment module is introduced to register segmentation results from different axial MRIs into a unified space. Three multi-modal datasets (one private and two public) were constructed to demonstrate the model’s performance. Compared to previous state-of-the-art methods, this model shows a significant advantage with both 5% and 10% labeled data. This study constructs a robust semi-supervised medical segmentation model, particularly effective in addressing label inconsistency and abnormal organ deformations. It also tackles the axial non-orthogonality challenges inherent in MRI, providing a consistent view of multi-structures.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.