A comparative study on machine learning approaches for rock mass classification using drilling data

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-10-05 DOI:10.1016/j.acags.2024.100199
Tom F. Hansen , Georg H. Erharter , Zhongqiang Liu , Jim Torresen
{"title":"A comparative study on machine learning approaches for rock mass classification using drilling data","authors":"Tom F. Hansen ,&nbsp;Georg H. Erharter ,&nbsp;Zhongqiang Liu ,&nbsp;Jim Torresen","doi":"10.1016/j.acags.2024.100199","DOIUrl":null,"url":null,"abstract":"<div><div>Current rock engineering design in drill and blast tunnelling primarily relies on engineers' observational assessments. Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during tunnel excavation, is underutilised, mainly serving for geological visualisation. This study aims to automate the translation of MWD data into actionable metrics for rock engineering. It seeks to link data to specific engineering actions, thus providing critical decision support for geological challenges ahead of the tunnel face. Leveraging a large and geologically diverse dataset of ∼500,000 drillholes from 15 tunnels, the research introduces models for accurate rock mass quality classification in a real-world tunnelling context. Both conventional machine learning and image-based deep learning are explored to classify MWD data into Q-classes and Q-values—examples of metrics describing the stability of the rock mass—using both tabular- and image data. The results indicate that the K-nearest neighbours algorithm in an ensemble with tree-based models using tabular data effectively classifies rock mass quality. It achieves a cross-validated balanced accuracy of 0.86 in classifying rock mass into the Q-classes A, B, C, D, E1, E2, and 0.95 for a binary classification with E versus the rest. Classification using a CNN with MWD-images for each blasting round resulted in a balanced accuracy of 0.82 for binary classification. Regressing the Q-value from tabular MWD-data achieved cross-validated R<sup>2</sup> and MSE scores of 0.80 and 0.18 for a similar ensemble model as in classification. High performance in regression and classification boosts confidence in automated rock mass assessment. Applying advanced modelling on a unique dataset demonstrates MWD data's value in improving rock mass classification accuracy and advancing data-driven rock engineering design, reducing manual intervention.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100199"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Current rock engineering design in drill and blast tunnelling primarily relies on engineers' observational assessments. Measure While Drilling (MWD) data, a high-resolution sensor dataset collected during tunnel excavation, is underutilised, mainly serving for geological visualisation. This study aims to automate the translation of MWD data into actionable metrics for rock engineering. It seeks to link data to specific engineering actions, thus providing critical decision support for geological challenges ahead of the tunnel face. Leveraging a large and geologically diverse dataset of ∼500,000 drillholes from 15 tunnels, the research introduces models for accurate rock mass quality classification in a real-world tunnelling context. Both conventional machine learning and image-based deep learning are explored to classify MWD data into Q-classes and Q-values—examples of metrics describing the stability of the rock mass—using both tabular- and image data. The results indicate that the K-nearest neighbours algorithm in an ensemble with tree-based models using tabular data effectively classifies rock mass quality. It achieves a cross-validated balanced accuracy of 0.86 in classifying rock mass into the Q-classes A, B, C, D, E1, E2, and 0.95 for a binary classification with E versus the rest. Classification using a CNN with MWD-images for each blasting round resulted in a balanced accuracy of 0.82 for binary classification. Regressing the Q-value from tabular MWD-data achieved cross-validated R2 and MSE scores of 0.80 and 0.18 for a similar ensemble model as in classification. High performance in regression and classification boosts confidence in automated rock mass assessment. Applying advanced modelling on a unique dataset demonstrates MWD data's value in improving rock mass classification accuracy and advancing data-driven rock engineering design, reducing manual intervention.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用钻探数据进行岩体分类的机器学习方法比较研究
目前钻爆法隧道的岩石工程设计主要依靠工程师的观察评估。边钻边测(MWD)数据是一种在隧道开挖过程中收集的高分辨率传感器数据集,但未得到充分利用,主要用于地质可视化。本研究旨在将 MWD 数据自动转化为岩石工程的可操作指标。它旨在将数据与具体的工程行动联系起来,从而为隧道工作面前方的地质挑战提供重要的决策支持。该研究利用来自 15 座隧道的 500,000 个钻孔组成的大型地质多样性数据集,引入了在现实世界隧道工程中对岩体质量进行准确分类的模型。研究探索了传统的机器学习和基于图像的深度学习,利用表格和图像数据将 MWD 数据划分为 Q 类和 Q 值(描述岩体稳定性的指标实例)。结果表明,在使用表格数据的树状模型的集合中,K-近邻算法能有效地对岩体质量进行分类。在将岩体划分为 Q 类 A、B、C、D、E1、E2 时,其交叉验证平衡准确率为 0.86,而将 E 与其他岩体进行二元分类的准确率为 0.95。使用带有每轮爆破的 MWD 图像的 CNN 进行分类,二元分类的均衡准确率为 0.82。通过对表格式 MWD 数据的 Q 值进行回归分析,在与分类类似的集合模型中,交叉验证的 R2 和 MSE 分别为 0.80 和 0.18。回归和分类的高性能增强了对岩体自动评估的信心。在一个独特的数据集上应用先进的建模方法,证明了 MWD 数据在提高岩体分类准确性、推进数据驱动的岩石工程设计、减少人工干预方面的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
A machine learning approach for mapping susceptibility to land subsidence caused by ground water extraction Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1