Novel application of unsupervised machine learning for characterization of subsurface seismicity, tectonic dynamics and stress distribution

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Applied Computing and Geosciences Pub Date : 2024-10-21 DOI:10.1016/j.acags.2024.100200
Mohammad Salam, Muhammad Tahir Iqbal, Raja Adnan Habib, Amna Tahir, Aamir Sultan, Talat Iqbal
{"title":"Novel application of unsupervised machine learning for characterization of subsurface seismicity, tectonic dynamics and stress distribution","authors":"Mohammad Salam,&nbsp;Muhammad Tahir Iqbal,&nbsp;Raja Adnan Habib,&nbsp;Amna Tahir,&nbsp;Aamir Sultan,&nbsp;Talat Iqbal","doi":"10.1016/j.acags.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><div>Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper understanding of subsurface stress distribution and tectonic dynamics. Employing a diverse range of clustering algorithms, with particular emphasis on Fuzzy C-Means (FCM), our research meticulously dissects the intricate physical processes that govern a complex tectonic zone. This technique effectively delineates distinct tectonic zones, aligning seamlessly with established seismological knowledge and underscoring the transformative potential of Artificial Intelligence (AI) in analyzing regional subsurface phenomena, even under conditions of data scarcity. Moreover, associating earthquakes with specific seismogenic structures significantly enhances seismic hazard analyses, potentially paving the way for autonomous insights that inform engineering hazard assessments.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"24 ","pages":"Article 100200"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197424000478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Our study pioneers an innovative use of unsupervised machine learning, a powerful tool for navigating unclassified data, to unravel the complexities of subsurface seismic activities and extract meaningful patterns. Our central objective is to comprehensively characterize seismicity within an active region by identifying distinct seismic clusters in spatial distribution, thereby gaining a deeper understanding of subsurface stress distribution and tectonic dynamics. Employing a diverse range of clustering algorithms, with particular emphasis on Fuzzy C-Means (FCM), our research meticulously dissects the intricate physical processes that govern a complex tectonic zone. This technique effectively delineates distinct tectonic zones, aligning seamlessly with established seismological knowledge and underscoring the transformative potential of Artificial Intelligence (AI) in analyzing regional subsurface phenomena, even under conditions of data scarcity. Moreover, associating earthquakes with specific seismogenic structures significantly enhances seismic hazard analyses, potentially paving the way for autonomous insights that inform engineering hazard assessments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无监督机器学习在表征地下地震活动性、构造动力学和应力分布方面的新应用
我们的研究开创性地使用了无监督机器学习这一用于浏览未分类数据的强大工具,以揭示地下地震活动的复杂性并提取有意义的模式。我们的核心目标是通过识别空间分布中不同的地震群,全面描述活跃区域内的地震活动特征,从而更深入地了解地下应力分布和构造动态。我们的研究采用了多种聚类算法,尤其侧重于模糊 C-Means (FCM),细致地剖析了支配复杂构造带的错综复杂的物理过程。这项技术有效地划分了不同的构造带,与既有的地震学知识完美地结合在一起,并强调了人工智能(AI)在分析区域地下现象方面的变革潜力,即使在数据匮乏的条件下也是如此。此外,将地震与特定的成震结构联系起来,大大增强了地震灾害分析的效果,有可能为自主洞察力铺平道路,为工程灾害评估提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing and Geosciences
Applied Computing and Geosciences Computer Science-General Computer Science
CiteScore
5.50
自引率
0.00%
发文量
23
审稿时长
5 weeks
期刊最新文献
Revolutionizing the future of hydrological science: Impact of machine learning and deep learning amidst emerging explainable AI and transfer learning Generating land gravity anomalies from satellite gravity observations using PIX2PIX GAN image translation Reconstruction of reservoir rock using attention-based convolutional recurrent neural network Mapping landforms of a hilly landscape using machine learning and high-resolution LiDAR topographic data Evaluating the performances of SVR and XGBoost for short-range forecasting of heatwaves across different temperature zones of India
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1