Research on application of knowledge graph in industrial control system security situation awareness and decision-making: A survey

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2024-10-18 DOI:10.1016/j.neucom.2024.128721
Lixin Liu , Peihang Xu , Kefeng Fan , Mingyan Wang
{"title":"Research on application of knowledge graph in industrial control system security situation awareness and decision-making: A survey","authors":"Lixin Liu ,&nbsp;Peihang Xu ,&nbsp;Kefeng Fan ,&nbsp;Mingyan Wang","doi":"10.1016/j.neucom.2024.128721","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge graph as a powerful tool for knowledge organization and representation, can integrate scattered data into a unified knowledge network, enabling knowledge association and knowledge reasoning, thus improving the accuracy of security situation awareness. In the context of industrial control system security decision-making, knowledge graphs can provide comprehensive knowledge support, assisting decision-makers in making intelligent decisions. This paper reviews the current research status of knowledge graphs in the field of industrial control system security situation awareness and decision-making, covering data-driven techniques, rule-based methods, and knowledge graph-based approaches. Existing knowledge graph technologies and their practical applications in industrial control system security situation awareness and decision-making are discussed. Finally, a series of challenges in the application of knowledge graphs in industrial control system security situation awareness and decision are summarized, such as data dispersion, correlation and information security, and the future prospects.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"613 ","pages":"Article 128721"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014929","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graph as a powerful tool for knowledge organization and representation, can integrate scattered data into a unified knowledge network, enabling knowledge association and knowledge reasoning, thus improving the accuracy of security situation awareness. In the context of industrial control system security decision-making, knowledge graphs can provide comprehensive knowledge support, assisting decision-makers in making intelligent decisions. This paper reviews the current research status of knowledge graphs in the field of industrial control system security situation awareness and decision-making, covering data-driven techniques, rule-based methods, and knowledge graph-based approaches. Existing knowledge graph technologies and their practical applications in industrial control system security situation awareness and decision-making are discussed. Finally, a series of challenges in the application of knowledge graphs in industrial control system security situation awareness and decision are summarized, such as data dispersion, correlation and information security, and the future prospects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识图谱在工业控制系统安全状况感知和决策中的应用研究:调查
知识图谱作为知识组织和表示的有力工具,可以将分散的数据整合成统一的知识网络,实现知识关联和知识推理,从而提高安全态势感知的准确性。在工业控制系统安全决策中,知识图谱可以提供全面的知识支持,辅助决策者做出智能决策。本文综述了知识图谱在工业控制系统安全态势感知与决策领域的研究现状,包括数据驱动技术、基于规则的方法和基于知识图谱的方法。讨论了现有的知识图谱技术及其在工业控制系统安全态势感知和决策中的实际应用。最后,总结了知识图谱在工业控制系统安全态势感知与决策中应用所面临的一系列挑战,如数据分散、相关性和信息安全等,并对未来进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Dismantling strategies for cost networks based on multi-view deep learning Contrastive coarse-to-fine medical segmentation with prototype guidance and dual-granularity fusion LECMARL: A cooperative multi-agent reinforcement learning method based on lazy mechanisms and efficient exploration Offset-corrected query generation strategies for cross-modality misalignment in 3D object detection: aligning LiDAR and camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1