{"title":"Development of physics-guided neural network framework for acid-base treatment prediction using carbon dioxide-based tubular reactor","authors":"Chanin Panjapornpon , Patcharapol Chinchalongporn , Santi Bardeeniz , Kulpavee Jitapunkul , Mohamed Azlan Hussain , Thanatip Satjeenphong","doi":"10.1016/j.engappai.2024.109500","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate acid-base treatment prediction is necessary to achieve the required yield, given the inherent complexity, high nonlinearity, and restricted availability of data samples; to address this challenge, a data-driven approach was developed. However, the technique is constrained by the need for sufficient data to construct an accurate model and lacks both process insight and physical consistency. Therefore, this study introduces a physics-guided neural network model for acid-base treatment prediction in a dynamic tubular reactor using the fundamental physical intermediate variables obtained through the derivation process of the reaction schematic. By integrating batch experimental data, which provides key intermediate variables such as residence time and hydroxide ion concentration, the model addresses the challenge of high nonlinearity and limited data availability. The result shows that the physics-guided potential of a hydrogen predictor had outstanding performance in terms of prediction accuracy (greatest coefficient of determination value of 0.9381). The proposed model demonstrated an average improvement of 24.92% in pH prediction accuracy compared to traditional models without physical guidance, with a maximum improvement of up to 64.95% under limited data conditions. Moreover, downsampling tests revealed that the proposed model maintained robust performance with minimal accuracy reduction even when data was limited without overfitting implication.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016580","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate acid-base treatment prediction is necessary to achieve the required yield, given the inherent complexity, high nonlinearity, and restricted availability of data samples; to address this challenge, a data-driven approach was developed. However, the technique is constrained by the need for sufficient data to construct an accurate model and lacks both process insight and physical consistency. Therefore, this study introduces a physics-guided neural network model for acid-base treatment prediction in a dynamic tubular reactor using the fundamental physical intermediate variables obtained through the derivation process of the reaction schematic. By integrating batch experimental data, which provides key intermediate variables such as residence time and hydroxide ion concentration, the model addresses the challenge of high nonlinearity and limited data availability. The result shows that the physics-guided potential of a hydrogen predictor had outstanding performance in terms of prediction accuracy (greatest coefficient of determination value of 0.9381). The proposed model demonstrated an average improvement of 24.92% in pH prediction accuracy compared to traditional models without physical guidance, with a maximum improvement of up to 64.95% under limited data conditions. Moreover, downsampling tests revealed that the proposed model maintained robust performance with minimal accuracy reduction even when data was limited without overfitting implication.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.