Flexural tensile behaviour of alkali-activated slag-based concrete and Portland cement-based concrete incorporating single and multiple hooked-end steel fibres

IF 6.7 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Journal of building engineering Pub Date : 2024-10-18 DOI:10.1016/j.jobe.2024.111090
{"title":"Flexural tensile behaviour of alkali-activated slag-based concrete and Portland cement-based concrete incorporating single and multiple hooked-end steel fibres","authors":"","doi":"10.1016/j.jobe.2024.111090","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, three-point bending tests on notched beams according to EN 14651 have been performed to evaluate the flexural post-cracking behaviour of alkali-activated slag-based concrete (AASC) and Portland cement-based concrete (PCC) incorporating single (3D) and multiple (4D, 5D) hooked-end steel fibres in different volume fractions up to 0.75 %. According to the experimental results, the post-cracking residual flexural strength increases with the increase in the fibre volume fraction for each fibre and concrete matrix type. AASC mixes incorporating 3D and 4D fibres show higher values of residual flexural strength for the same crack opening than PCC mixes with the same fibre type and dosage. Only for the mixes incorporating 5D fibres, steel fibre-reinforced PCC (SFRPCC) mixes outperform steel fibre-reinforced AASC (SFRAASC) mixes in terms of post-cracking behaviour. According to EN 14651, the values of the residual strengths <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>3</mn></mrow></msub></mrow></math></span>, corresponding to a crack mouth opening displacement (CMOD) of 0.5 mm and 2.5 mm, respectively, and their corresponding characteristic values <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn><mi>k</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>3</mn><mi>k</mi></mrow></msub></mrow></math></span>, respectively, can be derived from the experimental load-CMOD curves. Following the <em>fib</em> Model Code 2020, each mix can then be classified according to the values of <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn><mi>k</mi></mrow></msub></mrow></math></span> and the <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>3</mn><mi>k</mi></mrow></msub><mo>/</mo><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn><mi>k</mi></mrow></msub></mrow></math></span> ratio. As a result, empirical models have been developed for SFRPCC to predict the values of <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>3</mn></mrow></msub></mrow></math></span> and the applicability of such models to SFRAASC is evaluated in this study. Once the values of <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>1</mn><mi>k</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mi>f</mi><mrow><mi>R</mi><mn>3</mn><mi>k</mi></mrow></msub></mrow></math></span> are known, tensile constitutive models can be derived according to the <em>fib</em> Model Code 2020 and used as input parameters for finite element modelling. In this study, the accuracy of the code-based constitutive model to predict the flexural behaviour of SFRAASC and SFRPCC is evaluated using the concrete damage plasticity (CDP) model available in ABAQUS. The numerical model based on the tensile stress-strain curve in the <em>fib</em> Model Code 2020 can qualitatively capture the post-cracking behaviour of SFRAASC and SFRPCC incorporating 3D, 4D and 5D at 0.25 % fibre volume fraction, despite overestimating their tensile strength. For higher fibre volume fractions, the CDP model, in conjunction with the mode I parameters derived from the <em>fib</em> Model Code 2020, is unable to adequately describe the post-hardening behaviour exhibited by the composites.</div></div>","PeriodicalId":15064,"journal":{"name":"Journal of building engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of building engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352710224026585","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, three-point bending tests on notched beams according to EN 14651 have been performed to evaluate the flexural post-cracking behaviour of alkali-activated slag-based concrete (AASC) and Portland cement-based concrete (PCC) incorporating single (3D) and multiple (4D, 5D) hooked-end steel fibres in different volume fractions up to 0.75 %. According to the experimental results, the post-cracking residual flexural strength increases with the increase in the fibre volume fraction for each fibre and concrete matrix type. AASC mixes incorporating 3D and 4D fibres show higher values of residual flexural strength for the same crack opening than PCC mixes with the same fibre type and dosage. Only for the mixes incorporating 5D fibres, steel fibre-reinforced PCC (SFRPCC) mixes outperform steel fibre-reinforced AASC (SFRAASC) mixes in terms of post-cracking behaviour. According to EN 14651, the values of the residual strengths fR1 and fR3, corresponding to a crack mouth opening displacement (CMOD) of 0.5 mm and 2.5 mm, respectively, and their corresponding characteristic values fR1k and fR3k, respectively, can be derived from the experimental load-CMOD curves. Following the fib Model Code 2020, each mix can then be classified according to the values of fR1k and the fR3k/fR1k ratio. As a result, empirical models have been developed for SFRPCC to predict the values of fR1 and fR3 and the applicability of such models to SFRAASC is evaluated in this study. Once the values of fR1k and fR3k are known, tensile constitutive models can be derived according to the fib Model Code 2020 and used as input parameters for finite element modelling. In this study, the accuracy of the code-based constitutive model to predict the flexural behaviour of SFRAASC and SFRPCC is evaluated using the concrete damage plasticity (CDP) model available in ABAQUS. The numerical model based on the tensile stress-strain curve in the fib Model Code 2020 can qualitatively capture the post-cracking behaviour of SFRAASC and SFRPCC incorporating 3D, 4D and 5D at 0.25 % fibre volume fraction, despite overestimating their tensile strength. For higher fibre volume fractions, the CDP model, in conjunction with the mode I parameters derived from the fib Model Code 2020, is unable to adequately describe the post-hardening behaviour exhibited by the composites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱活性矿渣混凝土和掺入单钩和多钩钢纤维的硅酸盐水泥混凝土的挠曲拉伸性能
本研究根据 EN 14651 标准对缺口梁进行了三点弯曲试验,以评估碱活性矿渣基混凝土(AASC)和波特兰水泥基混凝土(PCC)在不同体积分数(最高为 0.75%)下掺入单根(3D)和多根(4D、5D)钩端钢纤维后的挠曲开裂行为。实验结果表明,对于每种纤维和混凝土基体类型,开裂后残余抗折强度随着纤维体积分数的增加而增加。与具有相同纤维类型和掺量的 PCC 混合物相比,掺入 3D 和 4D 纤维的 AASC 混合物在相同裂缝开度下显示出更高的残余抗折强度值。只有含有 5D 纤维的钢纤维增强 PCC(SFRPCC)混合料在开裂后的性能方面优于钢纤维增强 AASC(SFRAASC)混合料。根据 EN 14651 标准,残余强度 fR1 和 fR3 的值分别对应于 0.5 毫米和 2.5 毫米的裂缝张口位移 (CMOD),其相应的特征值 fR1k 和 fR3k 可分别从实验荷载-CMOD 曲线中得出。按照《2020 纤维模型规范》,每种混合料都可根据 fR1k 值和 fR3k/fR1k 比值进行分类。因此,针对 SFRPCC 开发了经验模型来预测 fR1 和 fR3 的值,本研究评估了这些模型对 SFRAASC 的适用性。一旦知道 fR1k 和 fR3k 的值,就可以根据《纤维模型规范 2020》推导出拉伸结构模型,并将其用作有限元建模的输入参数。在本研究中,使用 ABAQUS 中的混凝土损伤塑性(CDP)模型,评估了基于规范的构成模型预测 SFRAASC 和 SFRPCC 弯曲行为的准确性。尽管高估了 SFRAASC 和 SFRPCC 的抗拉强度,但基于纤维模型规范 2020 中拉伸应力-应变曲线的数值模型可以定性地捕捉到纤维体积分数为 0.25% 的 SFRAASC 和 SFRPCC 的三维、四维和五维开裂后行为。对于更高的纤维体积分数,CDP 模型以及从 fib Model Code 2020 得出的模式 I 参数无法充分描述复合材料的后硬化行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of building engineering
Journal of building engineering Engineering-Civil and Structural Engineering
CiteScore
10.00
自引率
12.50%
发文量
1901
审稿时长
35 days
期刊介绍: The Journal of Building Engineering is an interdisciplinary journal that covers all aspects of science and technology concerned with the whole life cycle of the built environment; from the design phase through to construction, operation, performance, maintenance and its deterioration.
期刊最新文献
Editorial Board The effect of copper slag as a precursor on the mechanical properties, shrinkage and pore structure of alkali-activated slag-copper slag mortar Experimental study on the products of coupling effect between microbial induced carbonate precipitation (MICP) and the pozzolanic effect of metakaolin Automated evaluation of degradation in stone heritage structures utilizing deep vision in synthetic and real-time environments Analysis of waste glass as a partial substitute for coarse aggregate in self-compacting concrete: An experimental and machine learning study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1