Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park
{"title":"CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds","authors":"Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park","doi":"10.1016/j.engappai.2024.109487","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.</div><div>As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.
As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.