CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Engineering Applications of Artificial Intelligence Pub Date : 2024-10-19 DOI:10.1016/j.engappai.2024.109487
Sung Jae Lee, Chaeyeong Yun, Su Jin Im, Kang Ryoung Park
{"title":"CNCAN: Contrast and normal channel attention network for super-resolution image reconstruction of crops and weeds","authors":"Sung Jae Lee,&nbsp;Chaeyeong Yun,&nbsp;Su Jin Im,&nbsp;Kang Ryoung Park","doi":"10.1016/j.engappai.2024.109487","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.</div><div>As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624016452","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous studies have been performed to apply camera vision technologies in robot-based agriculture and smart farms. In particular, to obtain high accuracy, it is essential to procure high-resolution (HR) images, which requires a high-performance camera. However, due to high costs it is difficult to widely apply the camera in agricultural robots. To overcome this limitation, we propose contrast and normal channel attention network (CNCAN) for super-resolution reconstruction (SR), which is the first research for the accurate semantic segmentation of crops and weeds even with low-resolution (LR) images captured by low-cost and LR camera. Attention block and activation function that considers high frequency and contrast information of images are used in CNCAN, and the residual connection method is applied to improve the learning stability.
As a result of experimenting with three open datasets, namely, Bonirob, rice seedling and weed, and crop/weed field image (CWFID) datasets, the mean intersection of union (MIOU) results of semantic segmentation for crops and weeds with SR images through CNCAN were 0.7685, 0.6346, and 0.6931 in the Bonirob, rice seedling and weed, and CWFID datasets, respectively, confirming higher accuracy than other state-of-the-art methods for SR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNCAN:用于农作物和杂草超分辨率图像重建的对比度和正常通道注意力网络
在基于机器人的农业和智能农场中应用相机视觉技术的研究不胜枚举。特别是,要获得高精度,必须获得高分辨率(HR)图像,这就需要高性能相机。然而,由于成本高昂,相机很难广泛应用于农业机器人。为了克服这一限制,我们提出了用于超分辨率重建(SR)的对比度和正常通道注意网络(CNCAN),这是首次针对低成本和低分辨率相机拍摄的低分辨率(LR)图像对农作物和杂草进行精确语义分割的研究。CNCAN 采用了考虑图像高频和对比度信息的注意块和激活函数,并应用残差连接法提高了学习稳定性。通过对 Bonirob、水稻秧苗和杂草以及作物/杂草田图像(CWFID)三个开放数据集的实验,CNCAN 利用 SR 图像对作物和杂草进行语义分割的平均交集联合(MIOU)结果在 Bonirob、水稻秧苗和杂草以及 CWFID 数据集中分别为 0.7685、0.6346 和 0.6931,证实了比其他最先进的 SR 方法更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
期刊最新文献
Constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks A deep sequence-to-sequence model for power swing blocking of distance protection in power transmission lines A Chinese named entity recognition method for landslide geological disasters based on deep learning A deep learning ensemble approach for malware detection in Internet of Things utilizing Explainable Artificial Intelligence Evaluating the financial credibility of third-party logistic providers through a novel frank operators-driven group decision-making model with dual hesitant linguistic q-rung orthopair fuzzy information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1