Applications of deep reinforcement learning in nuclear energy: A review

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-26 DOI:10.1016/j.nucengdes.2024.113655
Yongchao Liu , Bo Wang , Sichao Tan , Tong Li , Wei Lv , Zhenfeng Niu , Jiangkuan Li , Puzhen Gao , Ruifeng Tian
{"title":"Applications of deep reinforcement learning in nuclear energy: A review","authors":"Yongchao Liu ,&nbsp;Bo Wang ,&nbsp;Sichao Tan ,&nbsp;Tong Li ,&nbsp;Wei Lv ,&nbsp;Zhenfeng Niu ,&nbsp;Jiangkuan Li ,&nbsp;Puzhen Gao ,&nbsp;Ruifeng Tian","doi":"10.1016/j.nucengdes.2024.113655","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, Deep reinforcement learning (DRL), as an important branch of artificial intelligence (AI), has been widely used in physics and engineering domains. It combines the perceptual advantages of deep learning (DL) and the decision-making advantages of reinforcement learning (RL), and is very suitable for solving the “perception-decision” problem with high-dimensional and nonlinear characteristics. In this paper, firstly, the algorithm principle, mainstream framework, characteristics and advantages of DRL are summarized. Secondly, the application research status of DRL in other energy fields is reviewed, which provides reference for the possible impact and future research direction in the field of nuclear energy. Thirdly, the main research directions of DRL in the field of nuclear energy are summarized and commented, and the application architecture and advantages of DRL are illustrated through specific application cases. Finally, the advantages, limitations and future development direction of DRL in the field of nuclear energy are discussed. The goal of this review is to provide an understanding of DRL capabilities along with state-of-the-art applications in nuclear energy to researchers wishing to address new problems with these methods.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007556","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Deep reinforcement learning (DRL), as an important branch of artificial intelligence (AI), has been widely used in physics and engineering domains. It combines the perceptual advantages of deep learning (DL) and the decision-making advantages of reinforcement learning (RL), and is very suitable for solving the “perception-decision” problem with high-dimensional and nonlinear characteristics. In this paper, firstly, the algorithm principle, mainstream framework, characteristics and advantages of DRL are summarized. Secondly, the application research status of DRL in other energy fields is reviewed, which provides reference for the possible impact and future research direction in the field of nuclear energy. Thirdly, the main research directions of DRL in the field of nuclear energy are summarized and commented, and the application architecture and advantages of DRL are illustrated through specific application cases. Finally, the advantages, limitations and future development direction of DRL in the field of nuclear energy are discussed. The goal of this review is to provide an understanding of DRL capabilities along with state-of-the-art applications in nuclear energy to researchers wishing to address new problems with these methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度强化学习在核能中的应用:综述
近年来,深度强化学习(DRL)作为人工智能(AI)的一个重要分支,在物理和工程领域得到了广泛应用。它结合了深度学习(DL)的感知优势和强化学习(RL)的决策优势,非常适合解决具有高维和非线性特征的 "感知-决策 "问题。本文首先总结了 DRL 的算法原理、主流框架、特点和优势。其次,回顾了 DRL 在其他能源领域的应用研究现状,为其在核能领域可能产生的影响和未来研究方向提供参考。第三,总结并评述了 DRL 在核能领域的主要研究方向,并通过具体应用案例说明了 DRL 的应用架构和优势。最后,讨论了 DRL 在核能领域的优势、局限性和未来发展方向。本综述的目的是让希望使用这些方法解决新问题的研究人员了解 DRL 的能力以及在核能领域的最新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1