Stabilization of hybrid stochastic differential delay equations by feedback control based on discrete-time state observation

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS European Journal of Control Pub Date : 2024-10-10 DOI:10.1016/j.ejcon.2024.101126
Yin-Qiu Zhang , Xing Chen , Guangying Lv
{"title":"Stabilization of hybrid stochastic differential delay equations by feedback control based on discrete-time state observation","authors":"Yin-Qiu Zhang ,&nbsp;Xing Chen ,&nbsp;Guangying Lv","doi":"10.1016/j.ejcon.2024.101126","DOIUrl":null,"url":null,"abstract":"<div><div>For an unstable hybrid stochastic differential delay equation, this paper designs a feedback control based on discrete-time state observation to make the controlled system become almost sure exponential stability. In order to reveal the relationship between the two features contained in the system, namely, the dependence of duration between two consecutive observations on time-delay, the method of Lyapunov functional and auxiliary system are combined in this paper. It is shown that the underlying system possesses almost sure exponential stability for sufficiently small time-interval between two consecutive observations. Finally, an illustrative example is given to show the effectiveness of the proposed control strategy.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101126"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001869","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

For an unstable hybrid stochastic differential delay equation, this paper designs a feedback control based on discrete-time state observation to make the controlled system become almost sure exponential stability. In order to reveal the relationship between the two features contained in the system, namely, the dependence of duration between two consecutive observations on time-delay, the method of Lyapunov functional and auxiliary system are combined in this paper. It is shown that the underlying system possesses almost sure exponential stability for sufficiently small time-interval between two consecutive observations. Finally, an illustrative example is given to show the effectiveness of the proposed control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过基于离散时态观测的反馈控制稳定混合随机微分延迟方程
对于不稳定的混合随机微分延迟方程,本文设计了一种基于离散时间状态观测的反馈控制,使被控系统几乎确定指数稳定。为了揭示系统所包含的两个特征之间的关系,即两个连续观测值之间的持续时间对时延的依赖性,本文结合了李亚普诺夫函数和辅助系统的方法。结果表明,在两个连续观测值之间的时间间隔足够小的情况下,基本系统几乎肯定具有指数稳定性。最后,本文给出了一个示例来说明所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
期刊最新文献
Editorial Board Data-driven event-triggering mechanism for linear systems subject to input saturation Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning Communication-aware formation control for networks of AUVs Scaled graphs for reset control system analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1