Automatic PAUT crack detection and depth identification framework based on inspection robot and deep learning method

Fei Hu , Hong-ye Gou , Hao-zhe Yang , Huan Yan , Yi-qing Ni , You-wu Wang
{"title":"Automatic PAUT crack detection and depth identification framework based on inspection robot and deep learning method","authors":"Fei Hu ,&nbsp;Hong-ye Gou ,&nbsp;Hao-zhe Yang ,&nbsp;Huan Yan ,&nbsp;Yi-qing Ni ,&nbsp;You-wu Wang","doi":"10.1016/j.iintel.2024.100113","DOIUrl":null,"url":null,"abstract":"<div><div>Orthotropic steel bridge decks (OSD) are widely acclaimed for their lightweight, high load-carrying capacity, and adaptability, making them a popular choice in steel structure bridges. However, the complex nature of their structure makes them susceptible to fatigue cracking, posing significant safety concerns. To address the issues above, this study employs a robot equipped with an ultrasonic phased array probe to automate the detection of internal cracks within Orthotropic Steel Decks (OSD). A Deep Convolutional Generative Adversarial Network (DCGAN) is utilized to augment the training dataset of Phased Array Ultrasonic Testing (PAUT) images. The YOLO series algorithms are applied and compared for crack localization, with YOLO v7-tiny exhibiting the highest accuracy and speed. Integrating attention mechanisms into the YOLO v7-tiny algorithm to facilliate rapid and high-precision crack detection. Analyzing the echo region with an echo intensity bar enabled the identification of crack depth, with an identification error within 5%.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 1","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277299152400032X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthotropic steel bridge decks (OSD) are widely acclaimed for their lightweight, high load-carrying capacity, and adaptability, making them a popular choice in steel structure bridges. However, the complex nature of their structure makes them susceptible to fatigue cracking, posing significant safety concerns. To address the issues above, this study employs a robot equipped with an ultrasonic phased array probe to automate the detection of internal cracks within Orthotropic Steel Decks (OSD). A Deep Convolutional Generative Adversarial Network (DCGAN) is utilized to augment the training dataset of Phased Array Ultrasonic Testing (PAUT) images. The YOLO series algorithms are applied and compared for crack localization, with YOLO v7-tiny exhibiting the highest accuracy and speed. Integrating attention mechanisms into the YOLO v7-tiny algorithm to facilliate rapid and high-precision crack detection. Analyzing the echo region with an echo intensity bar enabled the identification of crack depth, with an identification error within 5%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于检测机器人和深度学习方法的 PAUT 裂纹自动检测和深度识别框架
各向同性钢桥面(OSD)因其重量轻、承载能力高和适应性强而广受赞誉,成为钢结构桥梁的首选。然而,其结构的复杂性使其很容易出现疲劳开裂,带来严重的安全隐患。为解决上述问题,本研究采用了配备超声波相控阵探头的机器人来自动检测正交异性钢桥面(OSD)的内部裂缝。利用深度卷积生成对抗网络(DCGAN)来增强相控阵超声波测试(PAUT)图像的训练数据集。应用 YOLO 系列算法对裂缝定位进行了比较,YOLO v7-tiny 显示出最高的准确性和速度。在 YOLO v7-tiny 算法中融入关注机制,以实现快速、高精度的裂纹检测。利用回波强度条分析回波区域,可识别裂纹深度,识别误差在 5%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
期刊最新文献
Review on optimization strategies of probabilistic diagnostic imaging methods An integrated management system (IMS) approach to sustainable construction development and management Quantitative risk analysis of road transportation of hazardous materials in coastal areas Multimodal vortex-induced vibration mitigation and design approach of bistable nonlinear energy sink inerter on bridge structure Enhanced operational modal analysis and change point detection for vibration-based structural health monitoring of bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1