HyperCAN: Hypernetwork-driven deep parameterized constitutive models for metamaterials

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-10-11 DOI:10.1016/j.eml.2024.102243
Li Zheng , Dennis M. Kochmann , Siddhant Kumar
{"title":"HyperCAN: Hypernetwork-driven deep parameterized constitutive models for metamaterials","authors":"Li Zheng ,&nbsp;Dennis M. Kochmann ,&nbsp;Siddhant Kumar","doi":"10.1016/j.eml.2024.102243","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce HyperCAN, a machine learning framework that utilizes <u>hyper</u>networks to construct adaptable <u>c</u>onstitutive <u>a</u>rtificial <u>n</u>eural networks for a wide range of beam-based metamaterials exhibiting diverse mechanical behavior under finite deformations. HyperCAN integrates an input convex neural network that models the nonlinear stress–strain map of a truss lattice, while ensuring adherence to fundamental mechanics principles, along with a hypernetwork that dynamically adjusts the parameters of the convex network as a function of the lattice topology and geometry. This unified framework demonstrates robust generalization in predicting the mechanical behavior of previously unseen metamaterial designs and loading scenarios well beyond the training domain. We show how HyperCAN can be integrated into multiscale simulations to accurately capture the highly nonlinear responses of large-scale truss metamaterials, closely matching fully resolved simulations while significantly reducing computational costs. This offers new efficient opportunities for the multiscale design and optimization of truss metamaterials.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"72 ","pages":"Article 102243"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001238","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce HyperCAN, a machine learning framework that utilizes hypernetworks to construct adaptable constitutive artificial neural networks for a wide range of beam-based metamaterials exhibiting diverse mechanical behavior under finite deformations. HyperCAN integrates an input convex neural network that models the nonlinear stress–strain map of a truss lattice, while ensuring adherence to fundamental mechanics principles, along with a hypernetwork that dynamically adjusts the parameters of the convex network as a function of the lattice topology and geometry. This unified framework demonstrates robust generalization in predicting the mechanical behavior of previously unseen metamaterial designs and loading scenarios well beyond the training domain. We show how HyperCAN can be integrated into multiscale simulations to accurately capture the highly nonlinear responses of large-scale truss metamaterials, closely matching fully resolved simulations while significantly reducing computational costs. This offers new efficient opportunities for the multiscale design and optimization of truss metamaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HyperCAN:超网络驱动的超材料深度参数化构成模型
我们介绍的 HyperCAN 是一种机器学习框架,它利用超网络为各种基于梁的超材料构建适应性强的构成人工神经网络,这些超材料在有限变形条件下表现出不同的力学行为。HyperCAN 集成了一个输入凸神经网络和一个超网络,前者对桁架晶格的非线性应力应变图进行建模,同时确保遵循基本力学原理,后者可根据晶格拓扑结构和几何形状动态调整凸网络的参数。这个统一的框架在预测以前未曾见过的超材料设计和加载场景的力学行为方面表现出了强大的通用性,远远超出了训练领域。我们展示了如何将 HyperCAN 集成到多尺度模拟中,以准确捕捉大规模桁架超材料的高度非线性响应,从而与全解析模拟紧密匹配,同时显著降低计算成本。这为桁架超材料的多尺度设计和优化提供了新的高效机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Characterization of 3D printed micro-blades for cutting tissue-embedding material. Electroadhesion-driven friction enhancement using electret films Automated de novo design of architectured materials: Leveraging eXplainable Artificial Intelligence (XAI) for inspiration from stochastic microstructure outliers Design the bionic sucker with high adsorption performance based on Sinogastromyzon szechuanensis Nonlinear two-scale beam simulations accelerated by thermodynamics-informed neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1