Analysis of nonphysical attraction force and new coefficient of restitution based on a nonlinear viscoelastic contact model in cohesionless granular system
{"title":"Analysis of nonphysical attraction force and new coefficient of restitution based on a nonlinear viscoelastic contact model in cohesionless granular system","authors":"","doi":"10.1016/j.mechmachtheory.2024.105821","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation implements systematical research on the coefficient of restitution (CoR) and nonphysical attraction force. Firstly, a characteristic length is redefined based on energy conservation. On this basis, a new general CoR model is derived through characteristic length. Subsequently, a new constraint equation of the power exponents is proposed from the new CoR model. The new CoR model is validated by experimental data regardless of whether the initial impact velocity is very low or high speed. Secondly, we systematically analyze the real reason for the nonphysical attraction force in the viscous damping loop. The simulation shows the nonphysical attraction force cannot be removed from the viscous damping loop. The real reason for the nonphysical attraction force lies in the natural property of the viscous damping factor. Finally, to eliminate the effect of the attraction force on the motion status of colliding particles after impact, a balance coefficient is introduced to compensate for the deficiency of nonphysical attraction force and original damping factor. The simulation proves that the post-impact velocity of colliding particles can be precisely captured using a viscous contact force model with a balance coefficient.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24002489","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation implements systematical research on the coefficient of restitution (CoR) and nonphysical attraction force. Firstly, a characteristic length is redefined based on energy conservation. On this basis, a new general CoR model is derived through characteristic length. Subsequently, a new constraint equation of the power exponents is proposed from the new CoR model. The new CoR model is validated by experimental data regardless of whether the initial impact velocity is very low or high speed. Secondly, we systematically analyze the real reason for the nonphysical attraction force in the viscous damping loop. The simulation shows the nonphysical attraction force cannot be removed from the viscous damping loop. The real reason for the nonphysical attraction force lies in the natural property of the viscous damping factor. Finally, to eliminate the effect of the attraction force on the motion status of colliding particles after impact, a balance coefficient is introduced to compensate for the deficiency of nonphysical attraction force and original damping factor. The simulation proves that the post-impact velocity of colliding particles can be precisely captured using a viscous contact force model with a balance coefficient.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry