Liam Hanson , Zilei Yi , Bin Zang , Mahdi Azarpeyvand
{"title":"Rotor noise in non-axial inflow conditions","authors":"Liam Hanson , Zilei Yi , Bin Zang , Mahdi Azarpeyvand","doi":"10.1016/j.apacoust.2024.110345","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an experimental study on characterising the aerodynamic and far-field acoustic performance of rotors operating in non-axial inflow conditions. The current experiments were carried out with a two-bladed rotor, operating with a tip Mach number of 0.56, approaching the practical tip Mach numbers expected of urban air mobility vehicles. Synchronous measurements of the aerodynamic force, far-field acoustics and blade phase angle were undertaken to provide insights on both the time-averaged and phase-averaged correlation between the rotor aerodynamic loading and the emitted noise. The far-field acoustic spectra are compared across a range of advance ratios (<span><math><mn>0.01</mn><mo>≤</mo><mi>μ</mi><mo>≤</mo><mn>0.04</mn></math></span>) and forward tilting angles (<span><math><mn>0</mn><mi>°</mi><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>30</mn><mi>°</mi></math></span>). When the inflow velocity increases, both the tonal and broadband components increase. Moreover, higher harmonics of the blade passing frequency are observed to become more prominent at higher advance ratios. As the rotor tilts forward from edgewise flight conditions, the broadband noise component reduces significantly, with the tones at fundamental blade passing frequency and higher harmonics also reducing in magnitude, agreeing well with the steady and unsteady thrust coefficients measured. From the aerodynamic loading, acoustic spectra and the directivity results, a transition from near-edgewise to near-axial modes of operation can be discerned at a tilt angle of approximately 16°. More interestingly, the phase-averaged thrust and acoustic power results show notable variations of the blade loading and acoustic emission through one full rotor rotation. At higher advance ratios and shallow tilting angles, the phase location of peaks in the root-mean-square of the fluctuating thrust coefficient agrees very well with those from the acoustic power, suggesting a strong correlation between the flow unsteadiness and the noise at these non-axial conditions, contributing to higher overall sound pressure levels.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24004961","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an experimental study on characterising the aerodynamic and far-field acoustic performance of rotors operating in non-axial inflow conditions. The current experiments were carried out with a two-bladed rotor, operating with a tip Mach number of 0.56, approaching the practical tip Mach numbers expected of urban air mobility vehicles. Synchronous measurements of the aerodynamic force, far-field acoustics and blade phase angle were undertaken to provide insights on both the time-averaged and phase-averaged correlation between the rotor aerodynamic loading and the emitted noise. The far-field acoustic spectra are compared across a range of advance ratios () and forward tilting angles (). When the inflow velocity increases, both the tonal and broadband components increase. Moreover, higher harmonics of the blade passing frequency are observed to become more prominent at higher advance ratios. As the rotor tilts forward from edgewise flight conditions, the broadband noise component reduces significantly, with the tones at fundamental blade passing frequency and higher harmonics also reducing in magnitude, agreeing well with the steady and unsteady thrust coefficients measured. From the aerodynamic loading, acoustic spectra and the directivity results, a transition from near-edgewise to near-axial modes of operation can be discerned at a tilt angle of approximately 16°. More interestingly, the phase-averaged thrust and acoustic power results show notable variations of the blade loading and acoustic emission through one full rotor rotation. At higher advance ratios and shallow tilting angles, the phase location of peaks in the root-mean-square of the fluctuating thrust coefficient agrees very well with those from the acoustic power, suggesting a strong correlation between the flow unsteadiness and the noise at these non-axial conditions, contributing to higher overall sound pressure levels.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.