Seul Yi Kim , Ajit Dattatray Phule , Jae Hwan Yang , Seung-Chul Park
{"title":"Improving H2S remediation efficiency through metal-free biochar modification: Nitrogen introduction and mesopore formation","authors":"Seul Yi Kim , Ajit Dattatray Phule , Jae Hwan Yang , Seung-Chul Park","doi":"10.1016/j.jaap.2024.106822","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen sulfide (H₂S) poses substantial risks to human safety and infrastructure due to its toxicity and corrosive properties. In this study, we present a novel approach to enhance the selective catalytic oxidation of H₂S by synthesizing a nitrogen-doped mesoporous carbon catalyst (denoted as M/B-X-PZ-T) through pyrolysis at 600–800 °C. Our catalyst, derived from commercial biochar, incorporates melamine as a nitrogen source and employs KCl and ZnCl₂ as porogens via the salt-templating method. The resulting catalyst, M/B-1-PZ-700, exhibits an impressive specific surface area of up to 1269.77 m²/g and a high mesopore ratio, with effective nitrogen doping reaching up to 15.35 at%. Remarkably, M/B-1-PZ-700 demonstrated exceptional performance, achieving 100 % H₂S conversion and 94 % sulfur selectivity at 170 °C, surpassing previous nitrogen-doped carbon catalysts. Furthermore, our optimized catalyst maintained over 95 % H₂S conversion and superior sulfur yield for 36 h, indicating excellent long-term stability. This metal-free catalyst derived from biochar offers a promising, sustainable, and eco-friendly solution for effectively mitigating hazardous H₂S emissions.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106822"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004777","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H₂S) poses substantial risks to human safety and infrastructure due to its toxicity and corrosive properties. In this study, we present a novel approach to enhance the selective catalytic oxidation of H₂S by synthesizing a nitrogen-doped mesoporous carbon catalyst (denoted as M/B-X-PZ-T) through pyrolysis at 600–800 °C. Our catalyst, derived from commercial biochar, incorporates melamine as a nitrogen source and employs KCl and ZnCl₂ as porogens via the salt-templating method. The resulting catalyst, M/B-1-PZ-700, exhibits an impressive specific surface area of up to 1269.77 m²/g and a high mesopore ratio, with effective nitrogen doping reaching up to 15.35 at%. Remarkably, M/B-1-PZ-700 demonstrated exceptional performance, achieving 100 % H₂S conversion and 94 % sulfur selectivity at 170 °C, surpassing previous nitrogen-doped carbon catalysts. Furthermore, our optimized catalyst maintained over 95 % H₂S conversion and superior sulfur yield for 36 h, indicating excellent long-term stability. This metal-free catalyst derived from biochar offers a promising, sustainable, and eco-friendly solution for effectively mitigating hazardous H₂S emissions.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.