{"title":"Co-pyrolysis of biomass/polyurethane foam waste: Thermodynamic study using Aspen Plus","authors":"Yaneeporn Patcharavorachot , Supanat Pradiskhean , Tanawat Aentung , Dang Saebea , Amornchai Arpornwichanop","doi":"10.1016/j.jaap.2024.106833","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the varieties and identical feature of solid waste, this research aims to consider the use of various feedstocks in pyrolysis process for liquid fuel production. The feedstock considered covers woody and non-woody biomass and plastic waste which are represented by sawdust (SD), palm leaf (PL) and polyurethane foam (PU) waste. In this research, both pure solid waste and the co-pyrolysis of biomass and plastic wastes were determined based on thermodynamics study. The model of pyrolysis process developed through Aspen Plus simulator was implemented to study the product yield, higher heating value (HHV) and energy consumption with a wider range of pyrolysis temperature and blending weight ratio. The simulation results clearly showed that the use of pure PU waste can provide the highest oil yield (∼44 wt%) which is corresponded to highest HHV (∼28 MJ/kg). The pyrolysis, operating at 400 °C, can provide the most significant quantity of oil. For the co-pyrolysis, the results revealed that more PU waste blended in both biomasses can improve both oil yield and HHV while the energy consumption is lower. From the simulation results, the optimal blending weight ratio of biomass and PU waste at 25:75 can provide suitable oil yield (∼43 wt%), HHV (∼26 MJ/kg) and energy consumption (243 kW).</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106833"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004881","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the varieties and identical feature of solid waste, this research aims to consider the use of various feedstocks in pyrolysis process for liquid fuel production. The feedstock considered covers woody and non-woody biomass and plastic waste which are represented by sawdust (SD), palm leaf (PL) and polyurethane foam (PU) waste. In this research, both pure solid waste and the co-pyrolysis of biomass and plastic wastes were determined based on thermodynamics study. The model of pyrolysis process developed through Aspen Plus simulator was implemented to study the product yield, higher heating value (HHV) and energy consumption with a wider range of pyrolysis temperature and blending weight ratio. The simulation results clearly showed that the use of pure PU waste can provide the highest oil yield (∼44 wt%) which is corresponded to highest HHV (∼28 MJ/kg). The pyrolysis, operating at 400 °C, can provide the most significant quantity of oil. For the co-pyrolysis, the results revealed that more PU waste blended in both biomasses can improve both oil yield and HHV while the energy consumption is lower. From the simulation results, the optimal blending weight ratio of biomass and PU waste at 25:75 can provide suitable oil yield (∼43 wt%), HHV (∼26 MJ/kg) and energy consumption (243 kW).
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.