Deepti Tewari, Arturo Gutierrez, Jason Croy, Venkat Srinivasan
{"title":"Designing Particle Morphologies for Materials with Solid Transport Limitations: A Case Study of Lithium and Manganese Rich Cathode Oxides","authors":"Deepti Tewari, Arturo Gutierrez, Jason Croy, Venkat Srinivasan","doi":"10.1021/acs.chemmater.3c02411","DOIUrl":null,"url":null,"abstract":"A lithium and manganese rich nickel–manganese–cobalt oxide (LMR-NMC) cathode is a promising candidate for next-generation batteries due to its high specific capacity, low cost, and low cobalt content. However, the material suffers from poor rate capability due to the diffusion limitations of lithium in the cathode particles. Understanding the material performance requires careful control of the morphology of the cathode particles, taking into account the primary and agglomerated diffusion pathways and the presence of pores, some of which could be closed from electrolyte infiltration. In this study, we use a microstructure-based mathematical model combined with experimental data to understand the role of the complex cathode particle morphology in the rate performance of the material. Scanning electron microscopy images of cathodes made under different synthesis conditions, which results in different agglomerate morphologies, serve as the input into the mathematical model. The model is then compared to rate data to understand the controlling parameters. The presence of intra-agglomerate closed pores results in a large agglomerate diffusion length in comparison to the ideal condition, where the primary particles are agglomerated in an open and dispersed manner such that the entire interfacial area is available for electrochemical reaction. Smaller primary and agglomerate diffusion lengths result in better electrochemical performance. This points us toward designing the morphology of the cathode particles to compensate for the diffusion limitation of LMR-NMC while maximizing the density.","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.3c02411","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A lithium and manganese rich nickel–manganese–cobalt oxide (LMR-NMC) cathode is a promising candidate for next-generation batteries due to its high specific capacity, low cost, and low cobalt content. However, the material suffers from poor rate capability due to the diffusion limitations of lithium in the cathode particles. Understanding the material performance requires careful control of the morphology of the cathode particles, taking into account the primary and agglomerated diffusion pathways and the presence of pores, some of which could be closed from electrolyte infiltration. In this study, we use a microstructure-based mathematical model combined with experimental data to understand the role of the complex cathode particle morphology in the rate performance of the material. Scanning electron microscopy images of cathodes made under different synthesis conditions, which results in different agglomerate morphologies, serve as the input into the mathematical model. The model is then compared to rate data to understand the controlling parameters. The presence of intra-agglomerate closed pores results in a large agglomerate diffusion length in comparison to the ideal condition, where the primary particles are agglomerated in an open and dispersed manner such that the entire interfacial area is available for electrochemical reaction. Smaller primary and agglomerate diffusion lengths result in better electrochemical performance. This points us toward designing the morphology of the cathode particles to compensate for the diffusion limitation of LMR-NMC while maximizing the density.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.