Jane E. Sinclair, Courtney Vedelago, Feargal J. Ryan, Meagan Carney, Meredith A. Redd, Miriam A. Lynn, Branka Grubor-Bauk, Yuanzhao Cao, Anjali K. Henders, Keng Yih Chew, Deborah Gilroy, Kim Greaves, Larisa Labzin, Laura Ziser, Katharina Ronacher, Leanne M. Wallace, Yiwen Zhang, Kyle Macauslane, Daniel J. Ellis, Sudha Rao, Lucy Burr, Amanda Bain, Anjana Karawita, Benjamin L. Schulz, Junrong Li, David J. Lynn, Nathan Palpant, Alain Wuethrich, Matt Trau, Kirsty R. Short
{"title":"Post-acute sequelae of SARS-CoV-2 cardiovascular symptoms are associated with trace-level cytokines that affect cardiomyocyte function","authors":"Jane E. Sinclair, Courtney Vedelago, Feargal J. Ryan, Meagan Carney, Meredith A. Redd, Miriam A. Lynn, Branka Grubor-Bauk, Yuanzhao Cao, Anjali K. Henders, Keng Yih Chew, Deborah Gilroy, Kim Greaves, Larisa Labzin, Laura Ziser, Katharina Ronacher, Leanne M. Wallace, Yiwen Zhang, Kyle Macauslane, Daniel J. Ellis, Sudha Rao, Lucy Burr, Amanda Bain, Anjana Karawita, Benjamin L. Schulz, Junrong Li, David J. Lynn, Nathan Palpant, Alain Wuethrich, Matt Trau, Kirsty R. Short","doi":"10.1038/s41564-024-01838-z","DOIUrl":null,"url":null,"abstract":"<p>An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups—recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals—revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation’s role in the symptoms of PASC-CVS.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"126 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01838-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups—recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals—revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation’s role in the symptoms of PASC-CVS.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.