Shuo Li , Alexander V. Babanin , Qingxiang Liu , Changlong Guan
{"title":"Evaluation of wave-based parameterizations of air–sea CO2 gas transfer over global oceans","authors":"Shuo Li , Alexander V. Babanin , Qingxiang Liu , Changlong Guan","doi":"10.1016/j.ocemod.2024.102446","DOIUrl":null,"url":null,"abstract":"<div><div>The parameterization of air–sea CO<sub>2</sub> transfer velocity employed in the estimation of bulk fluxes over global ocean is typically established on wind speed but could suffer from the deviations induced by sea states. In this study, the effectiveness of wave-based formulations are substantiated by reproducing climatological air–sea CO<sub>2</sub> flux and gas transfer velocity. Sea states play a significant role in facilitating CO<sub>2</sub> transfer, particularly in mid to high latitude regions with high wind speeds. The variability in transfer velocity induced by sea states is estimated up to 19% at the wind speed of 15 m/s. The two wave-based formulations used in this study are combined using a critical value of the Reynolds number. The combined formulation further improves estimates of the CO<sub>2</sub> gas transfer velocity.</div></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"192 ","pages":"Article 102446"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324001331","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The parameterization of air–sea CO2 transfer velocity employed in the estimation of bulk fluxes over global ocean is typically established on wind speed but could suffer from the deviations induced by sea states. In this study, the effectiveness of wave-based formulations are substantiated by reproducing climatological air–sea CO2 flux and gas transfer velocity. Sea states play a significant role in facilitating CO2 transfer, particularly in mid to high latitude regions with high wind speeds. The variability in transfer velocity induced by sea states is estimated up to 19% at the wind speed of 15 m/s. The two wave-based formulations used in this study are combined using a critical value of the Reynolds number. The combined formulation further improves estimates of the CO2 gas transfer velocity.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.