An investigation on the surface properties of B4C for advancing its nuclear applications

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Nuclear Materials Pub Date : 2024-10-18 DOI:10.1016/j.jnucmat.2024.155465
Jun Zhou, Nancy Lai Mun Wong, Jianwei Chai, Shijie Wang
{"title":"An investigation on the surface properties of B4C for advancing its nuclear applications","authors":"Jun Zhou,&nbsp;Nancy Lai Mun Wong,&nbsp;Jianwei Chai,&nbsp;Shijie Wang","doi":"10.1016/j.jnucmat.2024.155465","DOIUrl":null,"url":null,"abstract":"<div><div>B<sub>4</sub>C is an important material in diverse nuclear applications. However, a systematic examination of its surface properties is still missing. In this work, we employ first-principles simulations to investigate the energetic stability of 16 distinct slab models representing (001), (100), (101), (110), and (111) surfaces, which are constructed by minimizing dangling bonds. Our results show that C-terminated (001) surface exhibits significantly greater stability than other surfaces under both the carbon and boron-rich conditions. Besides, we also study the defect formation energies on the C-terminated (001) surface and compare them with the cases in bulk. The high formation energies of the defects suggest a low likelihood of their occurrence on this surface, despite their formation energies being lower compared to bulk cases. Furthermore, mid-gap surface states are revealed for the top atomic layers of the C-terminated (001) surface, which are deduced at the deeper layers, and the band structures of the middle layers of this slab recover to the bulk band gap. These surface mid-gap states allow electron excitation from the valence band to these states, resulting in a reduced optical band gap compared to the bulk band gap of B<sub>4</sub>C. This provides a plausible explanation for the significantly smaller band gap observed in experiments compared to the larger gap predicted by theoretical models. Our study not only sheds light on the surface properties of B<sub>4</sub>C but also lays the groundwork for advancing this material for more advanced nuclear applications.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"603 ","pages":"Article 155465"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524005658","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

B4C is an important material in diverse nuclear applications. However, a systematic examination of its surface properties is still missing. In this work, we employ first-principles simulations to investigate the energetic stability of 16 distinct slab models representing (001), (100), (101), (110), and (111) surfaces, which are constructed by minimizing dangling bonds. Our results show that C-terminated (001) surface exhibits significantly greater stability than other surfaces under both the carbon and boron-rich conditions. Besides, we also study the defect formation energies on the C-terminated (001) surface and compare them with the cases in bulk. The high formation energies of the defects suggest a low likelihood of their occurrence on this surface, despite their formation energies being lower compared to bulk cases. Furthermore, mid-gap surface states are revealed for the top atomic layers of the C-terminated (001) surface, which are deduced at the deeper layers, and the band structures of the middle layers of this slab recover to the bulk band gap. These surface mid-gap states allow electron excitation from the valence band to these states, resulting in a reduced optical band gap compared to the bulk band gap of B4C. This provides a plausible explanation for the significantly smaller band gap observed in experiments compared to the larger gap predicted by theoretical models. Our study not only sheds light on the surface properties of B4C but also lays the groundwork for advancing this material for more advanced nuclear applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究 B4C 的表面特性以促进其核应用
B4C 是一种应用于各种核领域的重要材料。然而,对其表面特性的系统研究仍然缺失。在这项工作中,我们采用第一性原理模拟研究了 16 个不同板坯模型的能量稳定性,这些板坯模型分别代表 (001)、(100)、(101)、(110) 和 (111) 表面,它们是通过最大限度地减少悬空键来构建的。结果表明,在富碳和富硼条件下,C 端(001)表面的稳定性明显高于其他表面。此外,我们还研究了 C 端(001)表面的缺陷形成能,并将其与块体中的情况进行了比较。缺陷的高形成能表明,尽管缺陷的形成能低于块体,但在该表面上出现缺陷的可能性很低。此外,C 端(001)表面顶层原子层的中隙表面态被揭示出来,深层原子层的中隙表面态被推导出来,该板坯中间层的带状结构恢复到了体带隙。这些表面中隙态允许电子从价带激发到这些态,从而导致光带隙小于 B4C 的体带隙。这为实验中观察到的带隙明显小于理论模型预测的较大带隙提供了一个合理的解释。我们的研究不仅揭示了 B4C 的表面特性,还为推进这种材料在更先进核领域的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
期刊最新文献
Editorial Board Additive manufactured ODS-FeCrAl steel achieves high corrosion resistance in lead-bismuth eutectic (LBE) Molecular dynamics simulations on the evolution of irradiation-induced dislocation loops in FeCoNiCrCu high-entropy alloy Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt Pressure-less joining SiCf/SiC tube and Kovar alloy with AgCuInTi filler: Interfacial reactions and mechanical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1