{"title":"Mechanical and high-temperature steam oxidation properties of Cr coatings deposited via high-power impulse magnetron sputtering","authors":"","doi":"10.1016/j.jnucmat.2024.155482","DOIUrl":null,"url":null,"abstract":"<div><div>Applying protective coatings to Zr alloy cladding surfaces is one of the better methods to design fuel tolerant materials. In this study, the surface of a Zr-4 alloy was coated with Cr using high-power impulse magnetron sputtering. Furthermore, the mechanisms by which bias voltages affect the mechanical characteristics, resistance to high-temperature steam oxidation, and coating structure were elucidated. The coating exhibits a strong (200) weave structure with coarse grains at a bias voltage of -100 V. With increasing bias, the energy of deposited particles increases, grains continue to grow, (200) preferential growth orientation disappears, and the coating exhibits a (110) crystal orientation. The growth structure of the coating first shows a tendency to be dense and then loose. For the Cr coating with a (200) crystal orientation, a dense oxide layer is preferentially formed after oxidation, which can effectively block the internal diffusion of O. With increasing oxidation time, coarse Cr grains can effectively block the external diffusion of Zr. Furthermore, the Cr coating exhibiting a (110) crystal orientation was severely oxidized after oxidation, resulting in the formation of cracks at the film base; this accelerated the outward diffusion of Zr.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002231152400583X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Applying protective coatings to Zr alloy cladding surfaces is one of the better methods to design fuel tolerant materials. In this study, the surface of a Zr-4 alloy was coated with Cr using high-power impulse magnetron sputtering. Furthermore, the mechanisms by which bias voltages affect the mechanical characteristics, resistance to high-temperature steam oxidation, and coating structure were elucidated. The coating exhibits a strong (200) weave structure with coarse grains at a bias voltage of -100 V. With increasing bias, the energy of deposited particles increases, grains continue to grow, (200) preferential growth orientation disappears, and the coating exhibits a (110) crystal orientation. The growth structure of the coating first shows a tendency to be dense and then loose. For the Cr coating with a (200) crystal orientation, a dense oxide layer is preferentially formed after oxidation, which can effectively block the internal diffusion of O. With increasing oxidation time, coarse Cr grains can effectively block the external diffusion of Zr. Furthermore, the Cr coating exhibiting a (110) crystal orientation was severely oxidized after oxidation, resulting in the formation of cracks at the film base; this accelerated the outward diffusion of Zr.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.