{"title":"SGO: An innovative oversampling approach for imbalanced datasets using SVM and genetic algorithms","authors":"Jianfeng Deng, Dongmei Wang, Jinan Gu, Chen Chen","doi":"10.1016/j.ins.2024.121584","DOIUrl":null,"url":null,"abstract":"<div><div>Imbalanced datasets present a challenging problem in machine learning and artificial intelligence. Since most models typically assume balanced data distributions, imbalanced positive and negative examples can lead to significant bias in prediction or classification tasks. Current over-sampling methods frequently encounter issues like overfitting and boundary bias. A novel imbalanced data augmentation technique called SVM-GA over-sampling (SGO) is proposed in this paper, which integrates Support Vector Machines (SVM) with Genetic Algorithms (GA). Our approach leverages SVM to identify the decision boundary and uses GA to generate new minority samples along this boundary, effectively addressing both over-fitting and boundary biases. It has been experimentally validated that SGO outperforms the traditional methods on most datasets, providing a novel and effective approach to address imbalanced data problems, with potential application prospects and generalization value.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121584"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524014981","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Imbalanced datasets present a challenging problem in machine learning and artificial intelligence. Since most models typically assume balanced data distributions, imbalanced positive and negative examples can lead to significant bias in prediction or classification tasks. Current over-sampling methods frequently encounter issues like overfitting and boundary bias. A novel imbalanced data augmentation technique called SVM-GA over-sampling (SGO) is proposed in this paper, which integrates Support Vector Machines (SVM) with Genetic Algorithms (GA). Our approach leverages SVM to identify the decision boundary and uses GA to generate new minority samples along this boundary, effectively addressing both over-fitting and boundary biases. It has been experimentally validated that SGO outperforms the traditional methods on most datasets, providing a novel and effective approach to address imbalanced data problems, with potential application prospects and generalization value.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.