A population hierarchical-based evolutionary algorithm for large-scale many-objective optimization

IF 8.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Swarm and Evolutionary Computation Pub Date : 2024-10-19 DOI:10.1016/j.swevo.2024.101752
Shiting Wang , Jinhua Zheng , Yingjie Zou , Yuan Liu , Juan Zou , Shengxiang Yang
{"title":"A population hierarchical-based evolutionary algorithm for large-scale many-objective optimization","authors":"Shiting Wang ,&nbsp;Jinhua Zheng ,&nbsp;Yingjie Zou ,&nbsp;Yuan Liu ,&nbsp;Juan Zou ,&nbsp;Shengxiang Yang","doi":"10.1016/j.swevo.2024.101752","DOIUrl":null,"url":null,"abstract":"<div><div>In large-scale many-objective optimization problems (LMaOPs), the performance of algorithms faces significant challenges as the number of objective functions and decision variables increases. The main challenges in addressing this type of problem are as follows: the large number of decision variables creates an enormous decision space that needs to be explored, leading to slow convergence; and the high-dimensional objective space presents difficulties in selecting dominant individuals within the population. To address this issue, this paper introduces an evolutionary algorithm based on population hierarchy to address LMaOPs. The algorithm employs different strategies for offspring generation at various population levels. Initially, the population is categorized into three levels by fitness value: poorly performing solutions with higher fitness (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>), better solutions with lower fitness (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span>), and excellent individuals stored in the archive set (<span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>). Subsequently, a hierarchical knowledge integration strategy (HKI) guides the evolution of individuals at different levels. Individuals in <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> generate offspring by integrating differential knowledge from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, while individuals in <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> generate offspring by learning prior knowledge from <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>. Finally, using a cluster-based environment selection strategy balances population diversity and convergence. Extensive experiments on LMaOPs with up to 10 objectives and 5000 decision variables validate the algorithm’s effectiveness, demonstrating superior performance.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101752"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002906","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In large-scale many-objective optimization problems (LMaOPs), the performance of algorithms faces significant challenges as the number of objective functions and decision variables increases. The main challenges in addressing this type of problem are as follows: the large number of decision variables creates an enormous decision space that needs to be explored, leading to slow convergence; and the high-dimensional objective space presents difficulties in selecting dominant individuals within the population. To address this issue, this paper introduces an evolutionary algorithm based on population hierarchy to address LMaOPs. The algorithm employs different strategies for offspring generation at various population levels. Initially, the population is categorized into three levels by fitness value: poorly performing solutions with higher fitness (Ph), better solutions with lower fitness (Pl), and excellent individuals stored in the archive set (Pa). Subsequently, a hierarchical knowledge integration strategy (HKI) guides the evolution of individuals at different levels. Individuals in Pl generate offspring by integrating differential knowledge from Pa and Ph, while individuals in Ph generate offspring by learning prior knowledge from Pa. Finally, using a cluster-based environment selection strategy balances population diversity and convergence. Extensive experiments on LMaOPs with up to 10 objectives and 5000 decision variables validate the algorithm’s effectiveness, demonstrating superior performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于群体分层的大规模多目标优化进化算法
在大规模多目标优化问题(LMaOPs)中,随着目标函数和决策变量数量的增加,算法的性能面临着巨大挑战。解决这类问题的主要挑战如下:大量决策变量产生了一个需要探索的巨大决策空间,导致收敛速度缓慢;高维目标空间给在种群中选择优势个体带来了困难。为解决这一问题,本文介绍了一种基于种群层次结构的进化算法,以解决 LMaOPs 问题。该算法在不同种群层次上采用不同的子代生成策略。起初,种群按适应度值分为三个等级:适应度较高的表现不佳的解决方案(Ph)、适应度较低的较好的解决方案(Pl)以及存储在档案集中的优秀个体(Pa)。随后,分层知识整合策略(HKI)会引导不同层次的个体进化。Pl 中的个体通过整合来自 Pa 和 Ph 的不同知识产生后代,而 Ph 中的个体则通过学习来自 Pa 的先验知识产生后代。最后,使用基于集群的环境选择策略,平衡了种群多样性和趋同性。在多达 10 个目标和 5000 个决策变量的 LMaOPs 上进行的大量实验验证了该算法的有效性,证明其性能优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Swarm and Evolutionary Computation
Swarm and Evolutionary Computation COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
16.00
自引率
12.00%
发文量
169
期刊介绍: Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.
期刊最新文献
An ensemble reinforcement learning-assisted deep learning framework for enhanced lung cancer diagnosis Multi-population coevolutionary algorithm for a green multi-objective flexible job shop scheduling problem with automated guided vehicles and variable processing speed constraints A knowledge-driven many-objective algorithm for energy-efficient distributed heterogeneous hybrid flowshop scheduling with lot-streaming Balancing heterogeneous assembly line with multi-skilled human-robot collaboration via Adaptive cooperative co-evolutionary algorithm A collaborative-learning multi-agent reinforcement learning method for distributed hybrid flow shop scheduling problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1