UAV measurements and AI-driven algorithms fusion for real estate good governance principles support

Pawel Tysiac , Artur Janowski , Marek Walacik
{"title":"UAV measurements and AI-driven algorithms fusion for real estate good governance principles support","authors":"Pawel Tysiac ,&nbsp;Artur Janowski ,&nbsp;Marek Walacik","doi":"10.1016/j.jag.2024.104229","DOIUrl":null,"url":null,"abstract":"<div><div>The paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection rates up to 77% and 83%, respectively, (2) a novel methodology is proposed to combine spatial data and assess their quality of the detected buildings by comparing the generated building polygons with existing cadastral maps. The evaluation uses a polygon-based comparison approach, which computes metrics such as Precision, Recall, F1-Score, and Accuracy based on the spatial relationships between predicted and reference building contours, (3) the weighted model showed about 7 % improvement in accuracy compared to cadastral data. This innovative approach substantially improves spatial data processing, aiding in implementing principles for real estate good governance and offering a valuable asset for various land administration applications.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104229"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces an original method for effective spatial data processing, particularly important for land administration and real estate governance. This approach integrates Unmanned Aerial Vehicle (UAV) data acquisition and processing with Artificial Intelligence (AI) and Geometric Transformation algorithms. The results reveal that: (1) while the separate applications of YOLO and Hough Transform algorithms achieve building detection rates up to 77% and 83%, respectively, (2) a novel methodology is proposed to combine spatial data and assess their quality of the detected buildings by comparing the generated building polygons with existing cadastral maps. The evaluation uses a polygon-based comparison approach, which computes metrics such as Precision, Recall, F1-Score, and Accuracy based on the spatial relationships between predicted and reference building contours, (3) the weighted model showed about 7 % improvement in accuracy compared to cadastral data. This innovative approach substantially improves spatial data processing, aiding in implementing principles for real estate good governance and offering a valuable asset for various land administration applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无人机测量与人工智能驱动的算法融合,为房地产良好治理原则提供支持
本文介绍了一种有效处理空间数据的独创方法,这对土地管理和房地产治理尤为重要。这种方法将无人机(UAV)数据采集和处理与人工智能(AI)和几何变换算法相结合。研究结果表明(1) 虽然单独应用 YOLO 和 Hough 变换算法的建筑物检测率分别高达 77% 和 83%,(2) 但我们提出了一种新方法来结合空间数据,并通过比较生成的建筑物多边形和现有地籍图来评估所检测建筑物的质量。评估采用基于多边形的比较方法,根据预测建筑轮廓与参考建筑轮廓之间的空间关系计算精确度、召回率、F1-分数和准确度等指标,(3) 与地籍数据相比,加权模型的准确度提高了约 7%。这种创新方法大大改进了空间数据处理,有助于落实房地产良好治理的原则,并为各种土地管理应用提供了宝贵的资产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
期刊最新文献
Combining readily available population and land cover maps to generate non-residential built-up labels to train Sentinel-2 image segmentation models An intercomparison of national and global land use and land cover products for Fiji The illusion of success: Test set disproportion causes inflated accuracy in remote sensing mapping research Multispectral imaging and terrestrial laser scanning for the detection of drought-induced paraheliotropic leaf movement in soybean DeLA: An extremely faster network with decoupled local aggregation for large scale point cloud learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1