Shuai Yuan , Yongqiang Liu , Yongnan Liu , Kun Zhang , Yongkang Li , Reifat Enwer , Yaqian Li , Qingwu Hu
{"title":"Spatiotemporal variations of surface albedo in Central Asia and its influencing factors and confirmatory path analysis during the 21st century","authors":"Shuai Yuan , Yongqiang Liu , Yongnan Liu , Kun Zhang , Yongkang Li , Reifat Enwer , Yaqian Li , Qingwu Hu","doi":"10.1016/j.jag.2024.104233","DOIUrl":null,"url":null,"abstract":"<div><div>Surface albedo (SA) is crucial for understanding land surface processes and climate simulation. This study analyzed SA changes and its influencing factors in Central Asia from 2001 to 2020, with projections 2025 to 2100. Factors analyzed included snow cover fraction, fractional vegetation cover, soil moisture, average state climate indices (temperature and precipitation), and extreme climate indices (heatwave indices and extreme precipitation indices). Pearson correlation coefficient, geographical convergent cross mapping, and geographical detector were used to quantify the correlation, causal relationship strength, and impact degree between SA and the influencing factors. To address multicollinearity, ridge regression (RR), geographically weighted ridge regression (GWRR), and piecewise structural equation modeling (pSEM) were combined to construct RR-pSEM and GWRR-pSEM models. Results indicated that SA in Central Asia increased from 2001 to 2010 and decreased from 2011 to 2020, with a projected future decline. There is a strong correlation and significant causality between SA and each factor. Snow cover fraction was identified as the most critical factor influencing SA. Average temperature and precipitation had a greater impact on SA than extreme climate indices, with a 1 °C temperature increase corresponding to a 0.004 decrease in SA. This study enhances understanding of SA changes under climate change, and provides a methodological framework for analyzing complex systems with multicollinearity. The proposed models offer valuable tools for studying interrelated factors in Earth system science.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104233"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Surface albedo (SA) is crucial for understanding land surface processes and climate simulation. This study analyzed SA changes and its influencing factors in Central Asia from 2001 to 2020, with projections 2025 to 2100. Factors analyzed included snow cover fraction, fractional vegetation cover, soil moisture, average state climate indices (temperature and precipitation), and extreme climate indices (heatwave indices and extreme precipitation indices). Pearson correlation coefficient, geographical convergent cross mapping, and geographical detector were used to quantify the correlation, causal relationship strength, and impact degree between SA and the influencing factors. To address multicollinearity, ridge regression (RR), geographically weighted ridge regression (GWRR), and piecewise structural equation modeling (pSEM) were combined to construct RR-pSEM and GWRR-pSEM models. Results indicated that SA in Central Asia increased from 2001 to 2010 and decreased from 2011 to 2020, with a projected future decline. There is a strong correlation and significant causality between SA and each factor. Snow cover fraction was identified as the most critical factor influencing SA. Average temperature and precipitation had a greater impact on SA than extreme climate indices, with a 1 °C temperature increase corresponding to a 0.004 decrease in SA. This study enhances understanding of SA changes under climate change, and provides a methodological framework for analyzing complex systems with multicollinearity. The proposed models offer valuable tools for studying interrelated factors in Earth system science.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.