Machine learning-based probabilistic predictions for Concrete Filled Steel Tube (CFST) column axial capacity

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL Structures Pub Date : 2024-10-28 DOI:10.1016/j.istruc.2024.107543
Dade Lai , Jingyu Wei , Alessandro Contento , Junqing Xue , Bruno Briseghella , Tommaso Albanesi , Cristoforo Demartino
{"title":"Machine learning-based probabilistic predictions for Concrete Filled Steel Tube (CFST) column axial capacity","authors":"Dade Lai ,&nbsp;Jingyu Wei ,&nbsp;Alessandro Contento ,&nbsp;Junqing Xue ,&nbsp;Bruno Briseghella ,&nbsp;Tommaso Albanesi ,&nbsp;Cristoforo Demartino","doi":"10.1016/j.istruc.2024.107543","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a novel probabilistic machine learning (ML) approach using Natural Gradient Boosting (NGBoost) to predict the axial compressive capacity of Concrete Filled Steel Tube (CFST) columns. Leveraging a comprehensive dataset of 1,127 experimentally tested CFST specimens under axial compressive loads, we compare the performance of various ML algorithms. These include deterministic models like eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), and probabilistic models such as XGBoost-Distribution (XGBD) and NGBoost. The NGBoost model, which employs Normal and LogNormal distributions to account for uncertainties in input data, demonstrates superior predictive accuracy and robustness. SHapley Additive exPlanations (SHAP) are utilized to interpret the influence of input features, providing insights into the relative importance of different structural parameters. The predictive performance of the NGBoost model with LogNormal distribution is benchmarked against existing design codes, including Eurocode 4, ANSI/AISC 360-22 AS/NZS 2327, and Chinese Standard (GB50936-2014), showcasing its enhanced accuracy and reliability. This approach not only improves predictive performances but also integrates uncertainty quantification, making it highly suitable for design applications in Civil Engineering where understanding the variability in the structural behavior is crucial.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"70 ","pages":"Article 107543"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424016965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel probabilistic machine learning (ML) approach using Natural Gradient Boosting (NGBoost) to predict the axial compressive capacity of Concrete Filled Steel Tube (CFST) columns. Leveraging a comprehensive dataset of 1,127 experimentally tested CFST specimens under axial compressive loads, we compare the performance of various ML algorithms. These include deterministic models like eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), and probabilistic models such as XGBoost-Distribution (XGBD) and NGBoost. The NGBoost model, which employs Normal and LogNormal distributions to account for uncertainties in input data, demonstrates superior predictive accuracy and robustness. SHapley Additive exPlanations (SHAP) are utilized to interpret the influence of input features, providing insights into the relative importance of different structural parameters. The predictive performance of the NGBoost model with LogNormal distribution is benchmarked against existing design codes, including Eurocode 4, ANSI/AISC 360-22 AS/NZS 2327, and Chinese Standard (GB50936-2014), showcasing its enhanced accuracy and reliability. This approach not only improves predictive performances but also integrates uncertainty quantification, making it highly suitable for design applications in Civil Engineering where understanding the variability in the structural behavior is crucial.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的混凝土填充钢管 (CFST) 柱轴向承载力概率预测
本研究采用自然梯度提升(NGBoost)技术,提出了一种新型概率机器学习(ML)方法,用于预测混凝土填充钢管(CFST)柱的轴向抗压能力。利用 1,127 个经过轴向压缩载荷实验测试的 CFST 试样组成的综合数据集,我们比较了各种 ML 算法的性能。这些算法包括确定性模型,如极端梯度提升(XGBoost)和人工神经网络(ANN),以及概率模型,如 XGBoost-分布(XGBD)和 NGBoost。NGBoost 模型采用正态分布和对数正态分布来考虑输入数据中的不确定性,显示出卓越的预测准确性和鲁棒性。SHapley Additive exPlanations(SHAP)用于解释输入特征的影响,提供了对不同结构参数相对重要性的深入了解。采用对数正态分布的 NGBoost 模型的预测性能以现有设计规范为基准,包括欧洲规范 4、ANSI/AISC 360-22 AS/NZS 2327 和中国标准(GB50936-2014),展示了其更高的准确性和可靠性。这种方法不仅提高了预测性能,还集成了不确定性量化功能,因此非常适合土木工程领域的设计应用,在这些应用中,了解结构行为的可变性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
期刊最新文献
Numerical simulation of strengthening/deterioration and damage development of cementitious materials under sulfate attack environment Computer vision-based substructure isolation method for localized damage identification Machine learning-based prediction of seismic response of elevated steel tanks Multivariate risk assessment for offshore structures by Gaidai risk evaluation method under an accumulation of fatigue damage, utilizing novel deconvolution scheme Repairing thermally shocked reinforced concrete beams using innovative CFRP sheets anchorage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1