{"title":"Attribution of forest disturbance types based on the Dynamic World class probability data: A case study of Myanmar","authors":"Zhe Li , Tetsuji Ota , Nobuya Mizoue","doi":"10.1016/j.jag.2024.104216","DOIUrl":null,"url":null,"abstract":"<div><div>Attribution of forest disturbance types using satellite remote sensing is practicable and several methods have been developed to automate the procedure. However, limited by commonly used data and the methodology, achieving accurate and rapid attribution of forest disturbance types over broad spatial extents remains challenging. In this study, we developed a method for attributing forest disturbance types using Dynamic World class probability data (i.e., probabilities for Dynamic World land use land cover types). Specifically, we first obtained a high-quality probability time series by pre-processing the class probability data. Then, we segmented the entire time series into several subseries and classified them according to the hypothetical trajectories. Finally, we completed the attribution of forest disturbance types using the variables derived from the probability time series and the results of the subseries classification. We used the developed method to investigate the forest disturbance types in Myanmar from 2017 to 2023 and validated its effectiveness by conducting unbiased accuracy assessment. The overall accuracy of the type for the acquired map was approximately 93.3%, and the overall accuracy of the year was approximately 96.7%, proving that the method is feasible. This method is based on the Google Earth Engine, which allows users to attribute forest disturbance types in different areas rapidly by simple parameter adjustments. Even if available classes do not satisfy users’ needs, the method can facilitate more detailed attribution of disturbance types.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"134 ","pages":"Article 104216"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224005727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0
Abstract
Attribution of forest disturbance types using satellite remote sensing is practicable and several methods have been developed to automate the procedure. However, limited by commonly used data and the methodology, achieving accurate and rapid attribution of forest disturbance types over broad spatial extents remains challenging. In this study, we developed a method for attributing forest disturbance types using Dynamic World class probability data (i.e., probabilities for Dynamic World land use land cover types). Specifically, we first obtained a high-quality probability time series by pre-processing the class probability data. Then, we segmented the entire time series into several subseries and classified them according to the hypothetical trajectories. Finally, we completed the attribution of forest disturbance types using the variables derived from the probability time series and the results of the subseries classification. We used the developed method to investigate the forest disturbance types in Myanmar from 2017 to 2023 and validated its effectiveness by conducting unbiased accuracy assessment. The overall accuracy of the type for the acquired map was approximately 93.3%, and the overall accuracy of the year was approximately 96.7%, proving that the method is feasible. This method is based on the Google Earth Engine, which allows users to attribute forest disturbance types in different areas rapidly by simple parameter adjustments. Even if available classes do not satisfy users’ needs, the method can facilitate more detailed attribution of disturbance types.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.