Qingle Wang , Jiacheng Liu , Guodong Li , Yunguang Han , Yuqian Zhou , Long Cheng
{"title":"A measurement-device-independent quantum secure digital payment","authors":"Qingle Wang , Jiacheng Liu , Guodong Li , Yunguang Han , Yuqian Zhou , Long Cheng","doi":"10.1016/j.physa.2024.130178","DOIUrl":null,"url":null,"abstract":"<div><div>In contemporary society, digital payment systems are crucial, yet vulnerable to security breaches. Based on the principles of quantum physics, quantum digital payment (QDP) protocols offer a theoretically superior security paradigm compared to those reliant on computational complexity. Nevertheless, those QDP protocols in practice are frequently compromised by imperfections in measurement devices, facilitating valuable information interception by malicious entities. Addressing this vulnerability, we propose a measurement-device-independent quantum secure digital payment (MDI-QSDP) protocol, designed to enhance security in digital payment systems by eliminating side-channel attacks on measurement devices. This protocol extends the framework of a novelly developed measurement-device-independent quantum secure communication (MDI-QSC) protocol, which supports secure dialogic exchanges without prior key sharing. Utilizing the proposed MDI-QSC protocol, participants can not only engage in secure direct communication but also establish a private key for subsequent encrypted interactions. Our MDI-QSDP protocol incorporates a robust authentication mechanism, ensuring that only legitimate participants can initiate transactions, thereby bolstering security. A comprehensive security analysis of the proposed protocol demonstrates its resilience against identity theft, information leakage, and other potential security breaches. Furthermore, simulations employing practical experimental parameters validate the protocol’s applicability and effectiveness in real-world scenarios, thereby confirming its potential to significantly enhance the security of future quantum digital payments.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"655 ","pages":"Article 130178"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006873","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In contemporary society, digital payment systems are crucial, yet vulnerable to security breaches. Based on the principles of quantum physics, quantum digital payment (QDP) protocols offer a theoretically superior security paradigm compared to those reliant on computational complexity. Nevertheless, those QDP protocols in practice are frequently compromised by imperfections in measurement devices, facilitating valuable information interception by malicious entities. Addressing this vulnerability, we propose a measurement-device-independent quantum secure digital payment (MDI-QSDP) protocol, designed to enhance security in digital payment systems by eliminating side-channel attacks on measurement devices. This protocol extends the framework of a novelly developed measurement-device-independent quantum secure communication (MDI-QSC) protocol, which supports secure dialogic exchanges without prior key sharing. Utilizing the proposed MDI-QSC protocol, participants can not only engage in secure direct communication but also establish a private key for subsequent encrypted interactions. Our MDI-QSDP protocol incorporates a robust authentication mechanism, ensuring that only legitimate participants can initiate transactions, thereby bolstering security. A comprehensive security analysis of the proposed protocol demonstrates its resilience against identity theft, information leakage, and other potential security breaches. Furthermore, simulations employing practical experimental parameters validate the protocol’s applicability and effectiveness in real-world scenarios, thereby confirming its potential to significantly enhance the security of future quantum digital payments.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.