Significance-based decision tree for interpretable categorical data clustering

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2024-10-26 DOI:10.1016/j.ins.2024.121588
Lianyu Hu, Mudi Jiang, Xinying Liu, Zengyou He
{"title":"Significance-based decision tree for interpretable categorical data clustering","authors":"Lianyu Hu,&nbsp;Mudi Jiang,&nbsp;Xinying Liu,&nbsp;Zengyou He","doi":"10.1016/j.ins.2024.121588","DOIUrl":null,"url":null,"abstract":"<div><div>Numerous clustering algorithms prioritize accuracy, but in high-risk domains, the interpretability of clustering methods is crucial as well. The inherent heterogeneity of categorical data makes it particularly challenging for users to comprehend clustering outcomes. Currently, the majority of interpretable clustering methods are tailored for numerical data and utilize decision tree models, leaving interpretable clustering for categorical data as a less explored domain. Additionally, existing interpretable clustering algorithms often depend on external, potentially non-interpretable algorithms and lack transparency in the decision-making process during tree construction. In this paper, we tackle the problem of interpretable categorical data clustering by growing a decision tree in a statistically meaningful manner. We formulate the evaluation of candidate splits as a multivariate two-sample testing problem, where a single <em>p</em>-value is derived by combining significance evidence from all individual categories. This approach provides a reliable and controllable method for selecting the optimal split while determining its statistical significance. Extensive experimental results on real-world data sets demonstrate that our algorithm achieves comparable performance in terms of cluster quality, running efficiency, and explainability relative to its counterparts.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"690 ","pages":"Article 121588"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015020","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous clustering algorithms prioritize accuracy, but in high-risk domains, the interpretability of clustering methods is crucial as well. The inherent heterogeneity of categorical data makes it particularly challenging for users to comprehend clustering outcomes. Currently, the majority of interpretable clustering methods are tailored for numerical data and utilize decision tree models, leaving interpretable clustering for categorical data as a less explored domain. Additionally, existing interpretable clustering algorithms often depend on external, potentially non-interpretable algorithms and lack transparency in the decision-making process during tree construction. In this paper, we tackle the problem of interpretable categorical data clustering by growing a decision tree in a statistically meaningful manner. We formulate the evaluation of candidate splits as a multivariate two-sample testing problem, where a single p-value is derived by combining significance evidence from all individual categories. This approach provides a reliable and controllable method for selecting the optimal split while determining its statistical significance. Extensive experimental results on real-world data sets demonstrate that our algorithm achieves comparable performance in terms of cluster quality, running efficiency, and explainability relative to its counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于显著性的决策树,实现可解释的分类数据聚类
许多聚类算法都将准确性放在首位,但在高风险领域,聚类方法的可解释性也至关重要。分类数据固有的异质性使用户理解聚类结果尤其具有挑战性。目前,大多数可解释聚类方法都是为数值数据量身定制的,并使用决策树模型,因此分类数据的可解释聚类方法还处于探索阶段。此外,现有的可解释聚类算法通常依赖于外部的、潜在的不可解释算法,并且在树构建过程中缺乏决策过程的透明度。在本文中,我们通过以有统计意义的方式生长决策树来解决可解释的分类数据聚类问题。我们将对候选分割的评估表述为一个多变量双样本检验问题,通过综合所有单个类别的显著性证据得出一个单一的 p 值。这种方法提供了一种可靠、可控的方法,用于选择最佳分割,同时确定其统计意义。在真实世界数据集上的大量实验结果表明,我们的算法在聚类质量、运行效率和可解释性等方面都达到了与同类算法相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board Community structure testing by counting frequent common neighbor sets Finite-time secure synchronization for stochastic complex networks with delayed coupling under deception attacks: A two-step switching control scheme Adaptive granular data compression and interval granulation for efficient classification Introducing fairness in network visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1