Experimental study of composite cold-formed steel and timber flooring systems with innovative shear connectors

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2024-10-11 DOI:10.1016/j.tws.2024.112571
Nathan Vella , Pinelopi Kyvelou , Spiridione Buhagiar , Leroy Gardner
{"title":"Experimental study of composite cold-formed steel and timber flooring systems with innovative shear connectors","authors":"Nathan Vella ,&nbsp;Pinelopi Kyvelou ,&nbsp;Spiridione Buhagiar ,&nbsp;Leroy Gardner","doi":"10.1016/j.tws.2024.112571","DOIUrl":null,"url":null,"abstract":"<div><div>An experimental investigation into the structural response of cold-formed steel-timber composite flooring systems with innovative and irregularly spaced shear connectors is presented in this paper. Five composite beam tests and a series of supporting material and push-out tests were carried out. The obtained results showed that the innovative shear connectors enabled the generation of considerable composite action, resulting in up to about 45 % increases in load-carrying capacity and 15 % and 20 % increases in the initial and mid-range stiffnesses respectively over the non-composite system. Methods for predicting the effective flexural stiffness and moment capacity of the examined cold-formed steel-timber composite beams are presented and validated against the derived physical test data. It is shown that accurate predictions for both the flexural stiffness and moment capacity can be obtained, with mean prediction-to-test ratios of 0.93 and 0.91 respectively.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112571"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental investigation into the structural response of cold-formed steel-timber composite flooring systems with innovative and irregularly spaced shear connectors is presented in this paper. Five composite beam tests and a series of supporting material and push-out tests were carried out. The obtained results showed that the innovative shear connectors enabled the generation of considerable composite action, resulting in up to about 45 % increases in load-carrying capacity and 15 % and 20 % increases in the initial and mid-range stiffnesses respectively over the non-composite system. Methods for predicting the effective flexural stiffness and moment capacity of the examined cold-formed steel-timber composite beams are presented and validated against the derived physical test data. It is shown that accurate predictions for both the flexural stiffness and moment capacity can be obtained, with mean prediction-to-test ratios of 0.93 and 0.91 respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用创新剪力连接件的冷弯型钢和木地板复合系统的实验研究
本文介绍了采用创新的不规则间距剪力连接件的冷弯型钢木复合地板系统的结构响应实验研究。共进行了五次复合梁试验以及一系列支撑材料和挤出试验。结果表明,创新的剪力连接件能够产生相当大的复合作用,与非复合系统相比,承载能力提高了约 45%,初始刚度和中期刚度分别提高了 15% 和 20%。本文介绍了预测冷弯钢木复合梁有效抗弯刚度和弯矩承载力的方法,并根据得出的物理测试数据进行了验证。结果表明,可以获得准确的抗弯刚度和弯矩承载力预测值,预测值与测试值的平均比率分别为 0.93 和 0.91。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Comparative study on collapse behavior of modular steel buildings: Experiment and analysis Local-global buckling interaction in steel I-beams—A European design proposal for the case of fire Impact resistance performance of 3D woven TZ800H plates with different textile architecture Integrated optimization of ply number, layer thickness, and fiber angle for variable-stiffness composites using dynamic multi-fidelity surrogate model Free vibration and nonlinear transient analysis of blast-loaded FGM sandwich plates with stepped face sheets: Analytical and artificial neural network approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1